ед².
Обозначим данную пирамиду буквами .
ед.
Проведём высоту . Точка
- центр
- точка пересечения, медиан, высот и биссектрис треугольника.
Проведём апофему (апофема - это высота боковой грани пирамиды, проведённая из вершины пирамиды) к стороне
основания пирамиды.
Т.к. данная пирамида - правильная, треугольная ⇒ основание пирамиды - правильный треугольник.
.
Проведём высоту в
.
Т.к. - равносторонний ⇒
- высота, медиана, биссектриса.
Высота и апофема
имеют общее основание, а именно точку
, т.к.
- медиана, а апофема
делит
пополам (по свойству).
.
Рассмотрим :
- прямоугольный, так как
- высота.
Найдём высоту по теореме Пифагора:
ед.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Точка O - пересечение медиан и делит их в отношении 2 : 1, считая от вершины.
ед.
ед.
Рассмотрим :
- прямоугольный, так как
- высота.
Если угол прямоугольного треугольника равен , то напротив лежащий катет равен произведению меньшего катета на
.
ед.
Найдём апофему по теореме Пифагора:
ед.
====================================================
полн. поверх. = S основ. + S бок.поверх.
осн. =
ед².
бок. поверх. =
(
осн.
), где
- апофема.
осн.
ед.
⇒ бок. поверх. =
ед².
⇒ полн. поверх. =
ед².
L = √(145π).
L = 2πR.
R = L/(2π) = √(145π)/2π.
Площадь S круга в основании цилиндра равна:
S = πR² = π*(√(145π)/2π)² = π*145π/4π² = 145/4 = 36,25 кв.ед.