1.Пусть x - основание, тогда 4х - сторона трегольника. Зная, что периметр равен 63 см, и что треугольник равнобедренный, соствим уравнение: 2. х+4х+4х=63 9х=63 х=63:9 х=7 3. 7 см - основание, 7*4=28 см - боковая сторона и другая сторона тоже 28 см ответ: 7 см ;28см ;28см
3. Вопрос: как указана точка N? Отрезки будут равны, если являются радиусами окружности с центром в т. N, а стороны треугольника являются касательными к этой окружности (перпендикуляра проведены в точки касания). В другом случае, эти перпендикуляры отсекают подобные треугольники (по двум углам), но не равные.
Давай попробуем рассуждать логически. Сейчас буду думать вслух, и одновременно нажимать на кнопки. Если мысль будет вилять, то не обессудь.
Попробуем решить треугольник АСО, который типа из соображений симметрии является равнобедренным. Интересует угол АСО. Гляну у себя на абаке, и он подскажет, что сей угол равен 36,87 градусов. Точнее, его косинус равен 0,5 * 24 / 15 = 0,8.
Продолжим СО до пересечения со стороной АВ, и точку пересечения назовём Х. Поскольку медианы точкой пересечения делятся в отношении 2:1 (если не ошибаюсь, или поправь меня), то ХС = СО * 1,5 = 15 * 1,5 = 22,5.
Теперь в треугольнике АСХ мы знаем стороны ХС = 22,5 и АС=24, и косинус угла между ними : 0,8 (угол = 36,87 градусов). Значит нам ничто не мешает найти по теореме косинусов третью сторону, то есть АХ. Решим на абаке, и он говорит, что АХ = 14,7732867.
Но мы же по условию имеем медианы, значит АВ = 2 * АХ = 29,546573.
Теперь, поскольку по условию L параллельна АВ, то старина Фалес по своей теореме подскажет, что L = 2/3 * АВ = 19,6977156.
Что-то такой ход мыслей мне самому не нравится. Слишком длинный путь. Но ответ всё-таки представляется верным.
2. х+4х+4х=63
9х=63
х=63:9
х=7
3. 7 см - основание, 7*4=28 см - боковая сторона и другая сторона тоже 28 см
ответ: 7 см ;28см ;28см