8) Объем конуса равен: V=1/3пR^2H. Из центра проведем отрезки к концам хорды. Получим равнобедренный треугольник,т.к. радиусы окружности равны,а значит отрезок соединяющий хорду с центром основания конуса является и высотой и медианой. От сюда следует,что данный отрезок делит полученный равнобедренный треугольник на два равных прямоугольных треугольников,а так же делит хорду попалам, и ее половина равна 4корень из2. Тогда по теореме Пифагора найдем радиус:R= V16+32= V48=4V3. Образующая радиус и высота конуса образуют прямоугольный треугольник. Из этого треугольника найдем высоту. Н=R*tg60=4V3*V3=12см. Теперь найдем объем: V=1/3*п*48*12=192п см^3
8) Объем конуса равен: V=1/3пR^2H. Из центра проведем отрезки к концам хорды. Получим равнобедренный треугольник,т.к. радиусы окружности равны,а значит отрезок соединяющий хорду с центром основания конуса является и высотой и медианой. От сюда следует,что данный отрезок делит полученный равнобедренный треугольник на два равных прямоугольных треугольников,а так же делит хорду попалам, и ее половина равна 4корень из2. Тогда по теореме Пифагора найдем радиус:R= V16+32= V48=4V3. Образующая радиус и высота конуса образуют прямоугольный треугольник. Из этого треугольника найдем высоту. Н=R*tg60=4V3*V3=12см. Теперь найдем объем: V=1/3*п*48*12=192п см^3
1. Неверно.
В четырехугольник можно вписать окружность только в том случае, если он выпуклый и суммы противолежащих сторон равны.
2. Верно.
Если треугольник вписан в окружность, то его тупой угол - вписанный. Вписанный угол равен половине дуги на которую опирается.
Градусная мера тупого угла больше 90°, значит градусная мера дуги больше 180°.
3. Неверно.
Средняя линия трапеции равна полусумме оснований.