)длина вектора |ab| = √(12+32) = √10 б) разложение по векторам: ab = i+3j 2) а) уравнение окружности: (x-xa)2 + (y-ya)2 = |ab|2 (x+1)2 + y2 = 10 б) точка d принадлежит окружности, если |ad| = |ab| |ad| = √(())2 + (2-0)2) = √40 √40 ≠ √10 - точка d не принадлежит окружности 3) уравнение прямой имеет вид y = kx+b k = yab/xab = 3/1 = 3 0 = 3·(-1) + b b = 3 уравнение прямой: y = 3x+3 4) а) координаты вектора cd: cd = (5-6; 2-1) = (-1; 1) xab/xcd = 1/-1 = -1, yab/ycd = 3/1 = 3 -1 ≠ 3 - следовательно, векторы ab и cd не коллинеарные, и четырёхугольник abcd не прямоугольник.подозреваю, что координаты точки d должны быть (5; -2) тогда точка d также не принадлежит окружности , но:а) координаты вектора cd: cd = (5-6; -2-1) = (-1; -3) xab/xcd = 1/-1 = -1, yab/ycd = 3/-3 = -1 -1 = -1 - векторы ab и cd коллинеарны б) координаты вектора ad: ad = (); -2-0) = (6; -2) координаты вектора bc: bc = (6-0; 1-3) = (6; -2) xbc/xad = 6/6 = 1, ybc/yad = -2/-2 = 1 1 = 1 - векторы bc и ad коллинеарны. векторы лежат на попарно параллельных прямых, значит, четырёхугольник abcd - параллелограмм. cos (ab^bc) = (1·6+3·(-2))/(√(12+32)·√(62+(-2)2)) = 0 ab^bc = 90° если в параллелограмме один угол прямой, то остальные углы тоже прямые, и этот параллелограмм - прямоугольник.
Сравним координаты векторов АВ и DC Знак вектора не стоит! AB ={0-1; 2-3; 4-2} = {-1;-1;2 }. DC ={1-2; 1-2; 4-2} = {-1; -1; 2}. Векторы равны, значит эти отрезки параллельны и равны, а поэтому АВСD - параллелограмм. Правда,остается шанс, что все точки лежат на одной прямой, но это проверим вычисляя косинус угла А. Угол А образован векторами АВ и АD. AB ={ -1; -1; 2}. AD ={2-1; 2-3: 2-2} = {1; -1;0}. Векторы не коллинеарны, значит точки не лежат на одной прямой. Для вычисления косинуса применим скалярное произведение векторов. cosA =(AB*AD)/(|AB|*|AD|)= (-1*1 + (-1)*(-1) + 2*0) / (√(1+1+4) * √(1+1+0))=0/(√6*√2) =0. Если косинус равен 0, то угол А = 90°.
Т.к. их сумма равна 90°, то составляем уравнение
х+х+40=90
2х=50
х=25°
∠В=25°
∠С=25°+40°=65°