Опустить перпендикуляры на МД и МА из центра (пусть N и S соответственно) Рассмотреть прямоугольник ОSMN . Искомая МО - диагональ нашего четырехугольника. МS =(15+6) = 21=NO; Далье рассмотрим треугольник NOD (ОD - радиус окружности =R; ND = 1/2(CD)=2V46; ) NO=21 из прямоугольника ; Найдем радиус по теореме пифагора( R)2 = (NO)2+(ND)2 (2 - это в квадрате);Радиус равен 25. Из треугольника АSO (AO =R=21; AS = 15(как половина АВ) найдем SO по теореме пифагора. SO =V (625-225) = 20; SO=MN =20; Теперь из треугольника ОSM найдем МО по теореме Пифагора. OM= V(20^2+21^2) = V841 = 29
Объяснение:
общий вид уравнения прямой есть y = kx + b. подставляем известные в уравнения:
1) -1 = 1*2 + b => b = -3; y = x - 3;
2) -1 = 2*2 + b => b = -5; y = 2x - 5;
3) -1 = -1*2 + b => b = 1; y = -x + 1;
4) -1 = -2*2 + b => b = 3; y = -2x +3;
5) -1 = -1/2*2 + b => b = 0; y = -1/2*x.
Чтобы изобразить просто подставь в каждое уравнение два значения различных x. Найди y, которым соответствуют каждому x. Отметь на плоскости точки с такими координатам (x,y) и проведи через них прямую. Например для первого уравнения y = x - 3:
подставим x = 3. y = 3 - 3 = 0. первая точка (3;0). подставим x = 4. y = 4 - 3 = 1. вторая точка (4;1).