Объем - это площадь основания на высоту. Площадь основания есть площадь ромба, а высоту можешь найти исходя из того, что диагональные сечения есть прямоугольники, ширина обеих - высота, а длины равны длинам соответствующих диагоналей. Произведение диагоналей находишь из определения площади ромба. S= произведение диагоналей делённое пополам, то есть ab/2. Отсюда ab=60. Это же произведение можно ещё представить, как (96/h) *(40\h) = 3840/(h^2), где h - высота
1.Рассмотрим два треугольника QBP и QEP, где Е-общая точка пересечения окружностей. эти треук равны, значит углы соответственно равны. Также QВРЕ-ромб, следоват ВР параллельно QЕ, и ЕР параллельно QВ. 2.Рассмотрим 2 четырехугольника ОАQЕ и ОQРС -это ромбы, АО паралл QЕ, ОС паралл РЕ, следовательноугАОС=угQЕР, тогда из равенства треуг QЕР=треугАОС, следоват АС=QР 3. если рассмотреть два четырехугольника ОQВС и ОАВР, ОС парал ЕР и парал QВ, а таже они равны = R., значит ОQВС -параллелограм по (насколько помню) первому признаку тогда QO=BC, а так же они паралл. аналогично доказывается что ОАВР-параллелогр., а значит АВ=ОР, мы доказали, что в треуг ОРQ и АВС АС=QР, QO=BC, АВ=ОР, а раз три стороны соответственно равны, то треуг=.
вв1 =2см
ав2 *2 =4 см