Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
Дано:
∆АВС.
∠А = 45°
BD - высота, медиана.
АС = 5 см.
Найти:
Расстояние от В до АС.
Решение.
∆ABD и ∆CBD - прямоугольные.(так как BD - высота)
Рассмотрим эти треугольники.
AD = DC, по условию
BD - общая сторона.
=> ∆ABD = ∆CBD, по катетам.
=> ∆АВС - равнобедренный.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ABD = ∠CBD = 90 - 45 = 45°(если треугольник равнобедренный то высота, проведённая из основания к вершине треугольника, является ещё и биссектрисой)
=> ∠АВС - прямой (90°)
Медиана, проведённая из прямого угла к гипотенузе равна половине гипотенузы.
=> ВD = 5 ÷ 2 = 2,5 см.
ответ: 2,5 см.
рассматриваем половинку равностороннего треугольника, обозначаем его сторону за х,
по пифагору х²=1/4х²+12
0,75х²=12
х=4
ответ все 3 стороны равны по 4