AD = 30
Объяснение:
Задание
На рисунке углы C и E равны 90°.
Найти АD, если известно, что АE = 18, , EC = 33, DB = 55.
Решение
1) Так как ВС и DE перпендикулярны АС, то ВС║DE, и треугольник АDE подобен треугольнику АВС.
2) Из подобия треугольников следует, что:
АС : АЕ = АВ : АD (1)
АС = АЕ + ЕС = 18 + 33 = 51
Пусть AD = х, тогда
АВ = DB+ AD = 55 + х
Тогда (1) можно представить в виде:
51 : 18 = (55+х) : х (2)
3) Согласно основному свойству пропорции, произведение средних равно произведению крайних, поэтому из (2) следует, что:
51 х = 18·55 + 18х
33х = 990
х = 990 : 33 = 30
AD = 30
ответ: AD = 30
1. Каждая сторона треугольника меньше суммы двух других сторон. Пользуясь этой теоремой, пишем неравенства для сторон шестиугольника.
2. Неравенство для второго вопроса -
PK+KL+LM+MN+NR+PR < PA+KA+DK+DL+LB+BM+ME+EN+NC+RC+PF+FR.
3. Неравенство для третьего вопроса -
2*(PK+KL+LM+MN+NR+PR) < PA+KA+DK+DL+LB+BM+ME+EN+NC+RC+PF+FR+(PK+KL+LM+MN+NR+PR).
4. На картинке.
5. Пользуемся ответами от 3 и 4 задания.Сумма периметров треугольников АВС и DEF равна 16 см (7 см+9 см). Я не знаю, там нужно писать единицы измерения или нет.
Вот такое неравенство в итоге получилось -
2*(PK+KL+LM+MN+NR+PR) < 16 см.
6. Логично, что поделить на 2.
Получаем, что -
2*(PK+KL+LM+MN+NR+PR) < 16 см
PK+KL+LM+MN+NR+PR < 8 см.
Сторна основания 8V3
Надо найти высоту
Сначала по теореме Пифагора находишь высоту основание, то есть высоту равностоароннего треугольника со стороной 8V3
Она будет равна 12. Берешь от нее 2/3, это 8 см, т. к высота является в таком треугольнике и медианой. А у медиан есть свойство: в точке пересечения они делатся в отношении 1:2 - почитай про это.
Высота пирамиды ( расстояние от твоей точки М до плоскости) находишь по теореме Пифагора
10^2 - 8^2 = 36 Высота равна 6 см