М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
машаоляапро
машаоляапро
30.09.2020 09:01 •  Геометрия

Найдите площадь ромба, сторона которого равна 17см, а разность диагоналей - 14см

👇
Ответ:
Niki1917
Niki1917
30.09.2020
Дан ромб, сторона которого равна 17 см, а разность диагоналей - 14 см.
Диагонали d1 и d2  ромба перпендикулярны, образуют 4 треугольника.
По заданию d1 - d2 = 14. Разделим на 2 обе части.
(d1/2) - (d2/2) = 7.
Обозначим (d1/2) за х - это катет треугольника.
Второй катет равен х - 7.
По Пифагору a² = (d1/2)²+ (d2/2)².
289 = x² + (x - 7)².
289 = x² + x² - 14x + 49.
2x² - 14x = 240  разделим на 2 и получаем квадратное уравнение.
х² - 7х - 120 = 0.
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:
D=(-7)^2-4*1*(-120)=49-4*(-120)=49-(-4*120)=49-(-480)=49+480=529;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√529-(-7))/(2*1)=(23-(-7))/2=(23+7)/2=30/2=15;
x_2=(-√529-(-7))/(2*1)=(-23-(-7))/2=(-23+7)/2=-16/2=-8.
Один катет получен: (d1/2) = 15 см, второй равен 15 - 7 = 8 см.
Площадь ромба равна:
S = 4*(1/2)*15*8 = 15*16 = 240 см².
4,6(94 оценок)
Открыть все ответы
Ответ:
Dilyash2007
Dilyash2007
30.09.2020

 \frac{40}{5} = 8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{50}{5} = 10

плиткой 5×5 покрыть можно,т.к получается целое число

8•10=80 плиток потребуется

 \frac{ 40}{7} = 5 \frac{5}{7} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{50}{8} = 6 \frac{1}{4} \\ \\ \\ \frac{40}{8} = 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{50}{7} = 7 \frac{1}{7}

плиткой 7×8 покрыть нельзя,т.к ни одной стороной не подходит

4,6(32 оценок)
Ответ:
andrey2085
andrey2085
30.09.2020
Дано: в конус вписан шар;    h = OC = 8 мм;    AC = 10 мм
Найти: r - ?;   длину линии касания

Для решения нужно провести сечение конуса по диаметру основания, в сечении будет равнобедренный ΔBCA

ΔAOC - прямоугольный. По теореме Пифагора
OA² = AC² - h² = 100 - 64 = 36 = 6²
OA = 6 мм 

ΔBCA равнобедренный  ⇒     BA = 2·OA= 2·6 = 12  мм
Площадь треугольника
S = \frac{BA*h}{2} = \frac{12*8}{2} = 48
Площадь треугольника через радиус вписанной окружности
S = pr = \frac{12+10+10}{2} *r = 48
16r = 48    ⇒    r = 3 мм

Длина касания - это длина окружности
             с центром в точке P и радиусом KP
ΔDKC - прямоугольный, т.к. DK - радиус в точку касания K

ΔBOC подобен ΔCKD по двум углам, прямому и общему ∠KCD

\frac{OB}{KD} = \frac{OC}{KC} \\ \\ KC = \frac{KD*OC}{OB} = \frac{3*8}{6} =4

ΔBOC подобен ΔKPC по двум углам, прямому и общему ∠KCD

\frac{BC}{KC} = \frac{BO}{KP} \\ \\ KP = \frac{KC*BO}{BC} = \frac{4*6}{10} =2,4

Длина окружности с центром в точке Р
L = 2π·KP = 2·π·2,4 = 4,8π

ответ: радиус вписанного шара  3 мм;   
            длина линии касания 4,8π мм
Высота конуса 8мм, образующая боковой поверхности 10 мм. найдите: 1. радиус вписанного шара; 2. длин
4,4(35 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ