Объяснение:
Диагональ должна разделить прямоугольник на два прямоугольных треугольника. Сторонами (катетами) каждого тругольника будут являться 2 смежных стороны прямоугольника (7 м и 24 м). Диагональ будет являть гипотенузой этого прямоугольника. По теореме Пифагора найдем диагональ:
Диагональ должна разделить прямоугольник на два прямоугольных треугольника. Сторонами (катетами) каждого тругольника будут являться 2 смежных стороны прямоугольника (7 м и 24 м). Диагональ будет являть гипотенузой этого прямоугольника. По теореме Пифагора найдем диагональ:
х²=7²+24²=49+576=625
х=√625=25
Sabc = 384 см².
Объяснение:
Так как точка S равноудалена от вершин треугольника АВС, она проецируется в центр описанной окружности этого треугольника - точку О. А так как треугольник АВС прямоугольный, то этот центр находится на середине гипотенузы АВ. Точка J по этой же причине находится на отрезке SO, перпендикулярном плоскости АВС. АО = ВО = СО как радиусы описанной окружности.
JO = SO - SJ = 40 - 25 = 15 см. Тогда в треугольнике CJO по Пифагору
СО = √(CJ²-JO²) = √(25²-15²) = 20 cм. АВ = 2·СО = 40 см.
Это гипотенуза. Второй катет равен по Пифагору:
АС = √(АВ²-ВС²) = √(40²-24²) = 32 см.
Площадь треугольника АВС равна
Sabc = (1/2)·АС·ВС = (1/2)·32·24 = 384 см².
(2√3)²=2²+4²-2·2·4·соsВ;
12=4+16-16соsВ;
16соsВ=20-12,
16соsВ=8,
соsВ=8/16=0,5.