Треугольники А0Д и В0С - подобные (уг.В0С = уг.А0Д как вертикальные; уг.СВ0 = уг.АД0 как внутренние накрест лежащие при параллельных прямых АД и ВС и секущей ВД).
Площадь тр-ка ВОС равна S1 = 0,5ВС·Н1
Площадь тр-ка АОД равна S2 = 0,5АД·Н2
При этом Н1:Н2 = к -коэфиициент подобия, а S1 : S2 = к²
S1 : S2 = 0,5ВС·Н1 : 0,5АД·Н2
к² = к· ВС: АД
к = 9/16
Итак, нашли коэффициент подобия.
Из подобия тех же тр-ков следует, что ОВ:ОД = 9/16, но ОД = АС - ОВ и
ОВ: (АС - ОВ) = 9/16
16·ОВ = 9·(АС - ОВ)
16·ОВ = 9·АС - 9·ОВ
25·ОВ = 9·АС
ОВ = 9·АС/25 = 9·18:25 = 6,48
ответ: ОВ = 6,48см
Объяснение:
Объяснение:
№3
<1+<2=180°
Пусть градусная мера угла <1 будет 2х°, тогда градусная мера угла <2 будет 7х°.
Составляем уравнение.
2х+7х=180°
9х=180
х=180/9
х=20
2*20=40° градусная мера <1;
7*20=140° градусная мера угла <2.
<3=<2, вертикальные углы.
<3=140°
ответ: <3=140°
№4
<2+<1=180°
Пусть градусная мера угла<1 будет х°, тогда градусная мера угла <2 будет 4х°.
Составляем уравнение
х+4х=180
5х=180
х=180/5
х=36° градусная мера угла <1;
4*36=144° градусная мера угла <2
<1=<3, вертикальные углы
<3=36°
ответ: <3=36°
обозначим стороны этого треугольника a, b, c.
каждая боковая грань призмы - параллелограмм, для оторого известна одна из сторон - боковое ребро призмы, 5 см.
площадь двух граней дана.
S_1 = a*5 = 20
a = 4 см
S_2 = b*5 = 20
b = 4 см
Теперь известны две стороны сечения по 4 см и угол между ними в 60 градусов.
треугольник сечения равнобедренный с углом при вершине 60°
Угол при основании
(180 - 60)/2 = 120/2 = 60°
Т.е. треугольник равносторонний
c = 4 см
площадь третьей грани
S_3 = 4*5 = 20 см^2
Полная боковая поверхность
3*20 = 60 см^2