В равнобедренном треугольнике АВС <BAC=<BCA=(180°-108°):2=36°. <BAD=18°, так как AD - биссектриса. Треугольник СЕD подобен треугольнику АВС, так как <DEC=108° (B треугольнике АDE <ADE=90°, <DAE=18°, a <DEA=72°. Тогда <DEC=108° как смежный с <DEA). Проведем KD параллельно АС. Тогда треугольник BKD подобен АВС и <BKD=36°. Отсюда <AKD=144°, как смежный с <BKD, а <KDA=18° (в треугольнике АКD по сумме углов треугольника: 180-144-18 = 18). Следовательно, треугольник АКD равнобедренный и АК=КD. Но АК=DC (так как АВ=ВС, а ВК=ВD). Значит и КD=DC. Тогда треугольники КВD и СЕD равны по стороне и двум прилежащим к ней углам. Отсюда ВD=DE, что и требовалось доказать.
22см - 12 см = 10 см Это означает, что на прямой строим рядом два отрезка по 11 см, получим отрезок АВ = 22 см 11 см * 2 = 22 см затем на этом отрезке АВ от его начала откладываем три отрезка по 4 см, отметим точку К. АК = 4 см * 3 = 12 см Оставшийся отрезок КВ = 22 см - 12 см = 10 см ответ : КВ = 10 см
х - боковая сторона; 3х - основание
х + х + 3х = 45
5х = 45
х = 45: 5
х = 9 (см) - боковые стороны
9 * 3 = 27 (см) - основание
Такой треугольник не существует, так как сумма длин боковых сторон меньше длины основания.