Найти длину третьей стороны треугольника можно, воспользовавшись теоремой косинусов. Данная геометрическая теорема звучит следующим образом: квадрат одной из сторон треугольника равен значению, получаемому при вычитании удвоенного произведения длины известных сторон и косинуса угла, который расположен между ними, из суммы квадратов длины известных сторон. a^2 = b^2 + c^2 -2 ab* cosC a^2 = 6^2 + 10^2 - 2 * 6 * 10 * cos 120= 136 - 120* cos120 =136 - 98 = 38 извлекаем квадратный корень а = 6,2 см третья сторона треугольника
Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
ответ:2.14
______________________________________________