Вравностороннем треугольнике abc точка d - середина стороны bc. из произвольной точки о, лежащей на стороне bc опущены перпендикудяры ok и om на стороны ab и ac. найдите периметр четырехугольника amok, если периметр треугольника acd равен p
№1 Рассмотрим треугольники MON и KOF, в них NO=OF (по условию), MO=OK (т.к. NO - биссиктриса), угол MON= углу FOK (как вертикальные), значит треугольники равны (по двум сторонам и углу между ними) №2 Рассмотрим треугольники ABP и CBQ, в них AP=QC (по условию), AB=BC (по условию), угол BAP= углу BCQ (в равнобедренных треугольниках углы при основании равны), следовательно треугольники ABP и CBQ равны. Из равенства треугольников берем равенство соответственных сторон BP и BQ, следовательно треугольник BPQ равнобедренный т.к. BP=BQ
Для начала нужно начертить ромб ABCD. Ромб - это параллелограмм, у которого все стороны равны. Отметим на нём диагонали AC и BD. Точка пересечения диагоналей О - центр вписанной окружности. Проведем к прямой AB высоту из точки O. OH - радиус вписанной окружности на чертеже Радиус, вписанной в ромб, окружности можно найти по формуле:
R - радиус, S - площадь ромба, Р - полупериметр ромба.
У нас неизвестно S. Найдём по формуле площади ромба по стороне и углу: площадь ромба равна произведению квадрата его стороны на синус угла.
= = =
Т.к. полупериметр ромба равен Р - полупериметр, а - сторона ромба.
Подставляем значения в формулу и считаем:
----------------------------------------------------------------------- ответ: R = 3
Если только натуральные то
16x^2-7y^2+9z^2=-3 \\ 7x^2-3y^2+4z^2 = 8 \\ \frac{-3-9z^2+7y^2}{16} = \frac{8-4z^2+3y^2}{7} \\ -21-63z^2+49y^2 = 128 - 64z^2+48y^2 \\ z^2+y^2 = 149 \\ x^2+y^2+z^2 = 10^2+7^2+4^2 = 165
Из меньших треугольников
\frac{ OK }{sin60} = OB \\ \frac{ OM }{sin60}= OC \\ \frac{OK+OM}{sin60} = BC \\ KB=OB*sin30 \\ CM=OC*sin30 \\ AK+AM= 2AB-BC*sin30 \\ P_{AMOK} = AB*( \frac{\sqrt{3}+3}{2}) \\ AB= \frac{ \sqrt{3}P+3P}{3} \\ P_{AMOK} = \frac{\sqrt{3}P+3P}{3} * \frac{\sqrt{3}+3}{2} = \sqrt{3}P+2P