★☆★ Чертёж смотрите во вложении ★☆★
Дано:
Отрезки АМ и ВК пересекаются в точке О.
Точка О — серединная точка для отрезков АМ и ВК (ОА = ОМ ; ОВ = ОК).
Доказать:
АВ║МК.
Доказательство:
ⵈ◊ⵈ Для седьмого класса ⵈ◊ⵈ
Соединим точки А и В отрезком АВ ; точки В и М отрезком ВМ ; точки К и М отрезком КМ ; точки А и К отрезком АК.
Рассмотрим ΔАОВ и ΔМОК.
ОА = ОМ (по условию).
ОВ = ОК (по условию).
∠АОВ = ∠МОК (как вертикальные).
Следовательно, ΔАОВ = ΔМОК по двум сторонам и углу между ними (первый признак равенства треугольников).
▸В равных треугольниках против равных сторон лежат равные углы◂
ОВ = ОК.
Следовательно, ∠ВАО = ∠ОМК.
Рассмотрим прямые АВ и МК при секущей АМ.
▸Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны◂
Накрест лежащие ∠ВАО = ∠ОМК (по выше доказанному), следовательно, АВ║МК (по выше сказанному).
ⵈ◊ⵈ Для восьмого класса ⵈ◊ⵈ
Соединим точки А и В отрезком АВ ; точки В и М отрезком ВМ ; точки К и М отрезком КМ ; точки А и К отрезком АК.
Рассмотрим получившиеся выпуклый четырёхугольник АКМВ.
АМ и ВК — диагонали.
▸Если диагонали выпуклого четырёхугольника точкой пересечения делятся пополам, то такой четырёхугольник — параллелограмм◂
ОА = ОМ (по условию).
ОВ = ОК (по условию).
Следовательно, четырёхугольник АКМВ — параллелограмм.
▸Параллелограмм — четырёхугольник, противоположные стороны которого параллельны ◂
Поэтому, по выше сказанному —
АВ║МК ; АК║ВМ
Объяснение:
Проведем высоту МН треугольника АМС. Т.к. плоскость ∆ АМС перпендикулярна плоскости ∆ АВС, МН лежит в плоскости АМС, перпендикулярна АС ⇒ перпендикулярна линии их пересечения.
Если прямая, лежащая в одной из двух перпендикулярных плоскостей, перпендикулярна линии их пересечения, то она перпендикулярна и другой плоскости.
1)
В ∆ АВС угол АСВ-90° ( дано), МС- наклонная. Её проекция НС⊥ВС, по т. о 3-х перпендикулярах МС⊥ВС. Доказано.
2)
•МН перпендикулярна плоскости АВС, ⇒ перпендикулярна любой прямой, проходящей через Н.
∆ ВМН прямоугольный с прямым углом МНВ.
Гипотенуза ∆ ВМН общая с ∆ ВСМ.
По т.Пифагора ВМ=√(BC²+MC²)=√15
•∆AMC - равнобедренный, высота МН - медиана. АН=СН=1,5
По т.Пифагора МН=√(MC²-˙HC*)=√3,75=√(375/100)=0,5√15
•Искомый угол - угол между МВ и её проекцией ВН на плоскость АВС
sin∠MBH=MH:MB=0,5√15:√15=0,5- это синус 30°
3) ВС⊥АС, ВС⊥МС, ⇒ ВС перпендикулярна плоскости АМС
Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.⇒
Плоскость BМС перпендикулярна плоскости AМС.
Проведем ЕН║ВС, КЕ║АС.
ЕН параллельна плоскости ВМС
Если прямая и плоскость параллельны, то расстояние между ними одинаково в каждой точке прямой.
Следовательно, расстояние НР от т.Н до плоскости ВМС равно расстоянию от т.Е до той же плоскости.
Расстояние от прямой до плоскости равно длине отрезка их общего перпендикуляра.
Н⊥МС, НР - высота прямоугольного треугольника СМН.
НР=СН•МН:МС
НР=1,5•0,5√15:√6=0,75√5•√3:(√3•√2)
НР=0,75√10•√2:2=0,375√10 ≈1,186 см
ВМ - медиана, значит М-середина АС.
М-середина АС, МК параллелен АВ, значит К-середина ВС.
К-середина ВС, KN параллелен AC, значит N-середина АВ.
N-середина АВ, значит АN=NВ=9.
КС=7, АС=16 -по условию.
К-середина ВС, N-середина АВ, значит NК-средняя линия и NК=АС:2=16:2=8.
Р=9+8+7+16=40.