Проведем окружность с центром точке В произвольного радиуса. Точки пересечения этой окружности со сторонами угла АВС обозначим Е и F. Проведем окружность с тем же радиусом с центром в точке D. L - точка пересечения окружности с лучом DK. Проведем окружность с центром в точке Е и радиусом ЕF, и такую же окружность с центром в точке L. P одна из точек пересечения этой окружности с первой. Затем построим такую же окружность с центром в точке Р. Обозначим точку ее пересечения с первой окружностью N. Через точку N проведем луч DM. Угол MDK - искомый.
∠А = 55°
Объяснение:
ВМ является медианой, следовательно АМ = МС - согласно условию задачи.
Но так как АМ = ВМ (также согласно условию задачи), то МС = ВМ, в силу чего треугольник ВМС - равнобедренный и ∠МВС = ∠С =35°.
Следовательно, угол ВМС равен:
180 - 35 - 35 = 110°.
Из этого следует, что в треугольнике АВМ угол АМВ, смежный с углом ВМС, равен:
180 - 110 = 70°.
Треугольник АВМ также является равнобедренным, т.к. АМ = ВМ, и если угол при его вершине равен 70°, то углы при основании (∠А и ∠АВМ) равны:
∠А = ∠АВМ = (180 - 70) : 2 = 110 : 2 = 55°
ответ: ∠А = 55°