Объяснение:
Найдем сторону с по углу и двум прилежащим сторонам:
с=√a²+b²-2ab*cos30° = 8²+9² -2*8*9*0.866=64 + 81 - 124,704 = 20.296≈20.3;
По теореме синусов
a/sinA = b/sinB=c/sin С
a/sinA=c/sinC;
SinA=a*sinC/c=8*0.5/20.3=0.197;
∠A=11.36°
∠B=180° - (∠A+∠C) = 180° - (30°+11.36°) = 180° - 41.36° = 138.64°
***
2. По теореме синусов
a/sinA = b/sinB=c/sin С. ∠C=90°. a=12; c=13.
sinA=a*sinC/c=12* 1 /13= 0.923;
∠A=67.4°;
∠B= 180° - (∠A+∠С) = 180° - (67,4° + 90°) = 180° -157,4° = 22,6°
∠B=22.6°
Найдем сторону b по углу и двум прилежащим сторонам:
b=√a²+c²-2ac*cos22.6°=√12²+13²-2*12*13*0,923= √144+169 - 287,976 = 25.
Точку A соединяем с точкой C, т.к. они лежат в одной плоскости.
Через точки A и B, лежащие в одной плоскости проводим прямую до пересечения со стороной DK или DN.
1. Предположим, что прямая AB пересекла сторону DK в точке E. Тогда просто соединяем точки E и C и получаем в сечении треугольник AEC.
2. Предположим, что прямая AB пересекла сторону DN в точке E. Тогда продолжим отрезок AC до пересечения с прямой MN (если они не параллельны) в точке H (см. рис 2 и 3). Точку H соединяем с точкой E, получая пересечение с ребром DM в точке F. Окончательно соединяем точку F с C и получаем в сечении четырехугольник AEFC.
Если AC || MN, то через точку E в плоскости MDN проводим прямую параллельную MN до пересечения с ребром MD в точке F. Окончательно соединяем точку F с C и получаем в сечении четырехугольник AEFC.