из опр. ср. линии тр-ка:
1) AD = DB; BE = EC
2) DE = AO = OC, где O - середина строны AC
угол BDE = углу BAC (соответственные)
угол BED = углу BCA (соответственные)
угол ABC - общий
проведем DO, DO || BC
угол ADO = углу ABC (соответственные)
угол DOA = углу BCA (соответственные)
проведем EO, EO || AB
аналогично доказывается равенство углов в тр-ках DEO и OEC
получаем, что искомый треугольник состоит из четырех равных треугольников, причем на параллелограмм ODEC, площадь которого равна двум площадям тр-ка CDE, приходится половина всей площади искомого треугольника.
следовательно, ΔABC = 4 * 38 = 152.
из опр. ср. линии тр-ка:
1) AD = DB; BE = EC
2) DE = AO = OC, где O - середина строны AC
угол BDE = углу BAC (соответственные)
угол BED = углу BCA (соответственные)
угол ABC - общий
проведем DO, DO || BC
угол ADO = углу ABC (соответственные)
угол DOA = углу BCA (соответственные)
проведем EO, EO || AB
аналогично доказывается равенство углов в тр-ках DEO и OEC
получаем, что искомый треугольник состоит из четырех равных треугольников, причем на параллелограмм ODEC, площадь которого равна двум площадям тр-ка CDE, приходится половина всей площади искомого треугольника.
следовательно, ΔABC = 4 * 38 = 152.
1) дополнительное построение-высота BH
2)угол В=90-45=45 градусов - свойство острых углов в прямоугольном треугольнике. Значит, треугольник ABH равнобедренный( углы при основании равны) и АН=ВН
3) по теореме Пифагора:
АВ^2=ВН^2+АН^2
Пусть ВН-х и АН-х, тогда
5^2=х^2+х^2
25=2х^2
х^2=12,5
х=корень из 12,5( отрицательное значение не берём, потому что длина всегда положительное число)
4) Sabcd=BH*AD= корень из 12,5 * 7корень из 2= 35