Если каждое ребро параллелепипеда увеличить в два раза, получится подобная ему фигура с коэффициентом подобия 2. Отношение площадей подобных фигур равно квадрату коэффициента подобия. S2:S1=k²=4 Площадь увеличенного параллелепипеда S=4•4=16 ( ед. площади).
Подробно. Площадь поверхности прямоугольного параллелепипеда сумма площади боковой поверхности и площади двух оснований. S1=2ab+h•2(a+b) S2=2(2a•2b)+2h•2(2a+2b)=8ab+2h•4(a+b)=8ab+8h(a+b) Разделив S2 на S1, получим - площадь увеличенной фигуры в 4 раза больше.
Задача составлена некорректно, но вычислить размер меньшего катета можно.
По условию d=СM=5, h=CK=7, АС - меньший катет и ∠В - меньший из острых. СК=АС·ВС/АВ ⇒⇒ СК/АС=ВС/АВ. По теореме биссектрис СМ/АМ=ВС/АВ. Объединим два уравнения: СК/АС=СМ/АМ, АС=СК·АМ/СМ=СК·(АС-СМ)/СМ=h(AC-d)/d, d·АС=h·АС-dh, AC(h-d)=dh, AC=dh/(h-d)=5·7/(7-5)=17.5, Не похоже, что это меньший из катетов, ведь высота СК=7, а это намного меньше этого катета. Найдём второй катет. АМ=АС-СМ=[dh/(h-d)]-d=d²/(h-d), Опять, по т. биссектрис СМ/АМ=ВС/АВ, АВ=АМ·ВС/СМ=d·BC/(h-d). По теореме Пифагора АВ²=АС²+ВС², d²·BC²/(h-d)²=[d²h²/(h-d)²]+BC², (d²·BC²-BC²(h-d)²)/(h-d)²=d²h²/(h-d)², BC²=d²h²/(d²-(h-d)²), ВС=dh/√(d²-(h-d)²)=5·7/√(5²-(7-5)²)≈7.6, ВС<АС, значит ВС - меньший из катетов. ответ: 7.6
Используем теорему косинусов
с² = a² + b² - 2ac * cos(C)
25² = 6² + 29² - 2 * 6 * 29 * cos(C)
625 = 36 + 841 - 348cos(C)
625 = 877 - 348cos(C)
348cos(C) = 877 - 625
348cos(C) = 252
Косинус в 0,72 есть угол в ≈ 44°
Рассмотрим ΔAHC - прямоугольный
По теореме синусов
ответ: AH ≈ 20 см