ABCD - трапеция; AD - нижнее основание; BC - верхнее основание; O - точка пересечения диагоналей. EF проходит через точку O и параллельно основаниям. MN проходит через точку O и перпендикулярно основаниям - высота трапеции. E∈AB; F∈CD; M∈BC; N∈AD Тр-к BOC подобен тр-ку AOD. Отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. Значит, AD:BC=3^:1; MO:ON=1:3; MO:MN=1:4; Пусть BC=x⇒AD=3x; MO=y;⇒ON=3y; MN=4y Площадь трапеции ABCD равна: S=1/2(AD+BC)*MO=1/2(x+3x)*4y=8xy Выразим через S площади BEFC и AEFD. Площадь AEFD равна сумме площадей AOFD и AEO. Рассмотрим тр-ки ACD и OCF. Они подобны. Их высоты относятся как 4:1, а площади как 16:1. Площадь ACD равна 1/2*3x*4y=6xy. Площадь OCF равна 1/16*6xy=3/8*xy. Площадь AOFD равна разности площадей ACD и OCF: 6xy-3/8*xy=45/8*xy Рассмотрим тр-ки ABC и AEO. Они подобны. Их высоты относятся как 4:3, а площади как 16:9. Площадь ABC равна 1/2*x*4y=2xy. Площадь AEO равна 9/16*2xy=9/8*xy. Площадь AEFD равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy Площадь BEFC равна разности площадей ABCD и AEFD: 8xy-27/4*xy=5/4*xy S(BEFC): S(AEFD)=5/4*xy:27/4*xy=5:27
1 тому ВМ медіана, то АМ = МС. ВМ загальна.
Одна з формул площі тр: половина твори сторін на синус кута між ними.
Площа трикутника АВМ = АМ * ВМ * sinАМВ (1)
Площа трикутника ВМС = СМ * ВМ * sinСМВ (2)
кут АМВ + кут СМВ = 180
АМВ = 180 - СМВ => sin (AMB) = sin (180-СMВ) => за формулою приведення => sin (180-СМВ) = sin (СMВ)
т.к АМ = СМ, ВМ - загальна і sin (АМВ) = sin (СMВ) вираження (1) і (2) рівні
2 * АМ * ВМ * sinАМВ = 24
АМ * ВМ * sinАМВ = 12
площа АМВ = 12 см ^ 2
2 Оскільки AB = BC, то треуг ABC рівнобедрений, а значить висота BD проведена до основи є медіаною і бісссектрісой => AD = DC & кути ABD = DBC
У прямокутному трикутнику ADB по теоремі пифагора BD = 12
Площа АВС дорівнює половині твори підстави на висоту 0,5 * 18 * 12 = 108
Объяснение: