ответ: доказать это невозможно. Объясняю: рисуем угол, проводим его биссектрису, берем на ней точку P. Проводим окружность с центром в точке P так, чтобы она каждую сторону угла пересекала в двух точках. Пусть на одной стороне это точки M_1 и M_2 (M_1 ближе к вершине угла, M_2 дальше), на второй -K_1 и K_2 (K_1 ближе к вершине угла, K_2 дальше). Если из точек M_1, M_2 выбрать, скажем M_1, а из точек K_1, K_2 выбрать K_2, то DM_1≠DK_2, хотя все условия задачи выполнены.
Эта ситуация является хорошей иллюстрацией, почему есть признак равенства треугольников по двум сторонам и углу между ними, но нет признака по двум сторонам и углу не между ними (то есть такой признак можно было бы придумать, но пришлось бы давать дополнительную информацию, скажем по поводу того, являются ли наши треугольники остроугольными или тупоугольными)
Если трапецию можно вписать в окружность, то она равнобедренная. <CAD=<BCA (как внутренние накрест лежащие при параллельных АВ и CD и секущей АС. Значит и <ВАС=30° (АС - биссектриса) и треугольник АВС равнобедренный. Тогда его высота ВН - это и медиана. Значит ВН - это часть радиуса ВО, так как радиус, перпендикулярный хорде, делит ее пополам. Угол АВС этого треугольника равен 120°. Это вписанный угол, опирающийся на дугу АDC. Значит градусная мера дуги АDC в два раза больше и равна 240°. Тогда градусная мера дуги АВС равна АВС=360°-240°=120°. На эту дугу опирается центральный угол АОС, соответственно равный 120°. Итак, мы имеем четырехугольник АВСО, являющийся ромбом, и точка О лежит на стороне АD нашей трапеции. Следоательно АВ=ВС=АО=ОD=ОС=СD=R=4см. Проведем высоту трапеции СК. В равностороннем треугольнике ОСD высота СК равна (√3/2)*а, где а=4см. СК=2√3см. Площадь трапеции S=(BC+AD)*CК/2=12√3см². ответ: S=12√3см².
В
Объяснение:
45 + 45 + 90 =180,
Один угол 90 а остальние по 45