Заполните массив случайными целыми числами от 0 до 99. Выведите исходный массив. Сформируйте новый массив, который бы состоял из элементов первого, записанных справа налево. Выведите его на экран. В отличии от задачи 10, в результате должно быть два различных массива. int[] ms = new int[10];
Random rnd = new Random();
for(int i = 0; i < ms.Length-1; i++)
{
ms[i] = rnd.Next(0, 99);
Console.WriteLine(ms[i] + " ");
}
Console.WriteLine();
int[] ms1 = new int[ms.Length];
for(int i = ms.Length-1; i >= ms1.Length-1; i--)
{
Console.WriteLine(ms1[i] + " ");
}
Что не так?
ответ: 432 см²
Объяснение:
Обозначим трапецию АВСD; BC||AD. BC=b=11 см, AD=a=25 см
Опустим из вершины В высоту ВН.
Высота равнобедренной трапеции, опущенная из вершины тупого угла, делит основание на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме. ⇒
АН=(25-11):2=7 см
DH=(25+11):2=18 см
ВС||AD, диагональ трапеции ВD- секущая. ⇒ ∠СВD=∠BDA (по свойству накрестлежащих углов)..
ВD - биссектриса угла В, поэтому и ∠АВD=∠BDA. Углы ∆ АВD при основании BD равны, ⇒ ∆ АВD равнобедренный, АВ=АD=25 см.
Из ∆ АВН по т.Пифагора ВН=24 ( стороны ∆ АВН из Пифагоровых троек).
Площадь трапеции равна произведению полусуммы оснований на высоту. Полусумма оснований DH=18 см
Ѕ(ABCD)=HD•BH=18•24=432 см²
Объяснение: