М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
karinroy
karinroy
18.07.2020 19:13 •  Математика

Кто 60

обчислити за формулою зведення​

👇
Ответ:
kirstav64
kirstav64
18.07.2020

1) sin 240° =-√3/2

2) tg (45°+180°) =tg 45°=1

4,6(55 оценок)
Открыть все ответы
Ответ:
Karumi1
Karumi1
18.07.2020

Дифференциал функции

dy=f′(x)dx

Как видим, для нахождения дифференциала нужно умножить производную на dx. Это позволяет из таблицы формул для производных сразу записать соответствующую таблицу для дифференциалов.

Полный дифференциал для функции двух переменных: Дифференциал функции

Полный дифференциал для функции трех переменных равен сумме частных дифференциалов: d f(x,y,z)=dxf(x,y,z)dx+dyf(x,y,z)dy+dzf(x,y,z)dz

Определение. Функция y=f(x) называется дифференцируемой в точке x0, если ее приращение в этой точке можно представить в виде ∆y=A∆x + α(∆x)∆x, где A – константа, а α(∆x) – бесконечно малая при ∆x → 0.

Требование дифференцируемости функции в точке эквивалентно существованию производной в этой точке, причем A=f’(x0).

Пусть f(x) дифференцируема в точке x0 и f '(x0)≠0, тогда ∆y=f’(x0)∆x + α∆x, где α= α(∆x) →0 при ∆x→0. Величина ∆y и каждое слагаемое правой части являются бесконечно малыми величинами при ∆x→0. Сравним их: , то есть α(∆x)∆x – бесконечно малая более высокого порядка, чем f’(x0)∆x.

, то есть ∆y~f’(x0)∆x. Следовательно, f’(x0)∆x представляет собой главную и вместе с тем линейную относительно ∆x часть приращения ∆y (линейная – значит содержащая ∆x в первой степени). Это слагаемое называют дифференциалом функции y=f(x) в точке x0 и обозначают dy(x0) или df(x0). Итак, для произвольных значений x

dy=f′(x)∆x. (1)

Полагают dx=∆x, тогда

dy=f′(x)dx. (2)

ПРИМЕР. Найти производные и дифференциалы данных функций.

а) y=4tg2x

дифференциал:  

б)  

дифференциал:  

в) y=arcsin2(lnx)

дифференциал:  

г)  

=  

дифференциал:  

ПРИМЕР. Для функции y=x3 найти выражение для ∆y и dy при некоторых значениях x и ∆x.

Решение. ∆y = (x+∆x)3 – x3 = x3 + 3x2∆x +3x∆x2 + ∆x3 – x3 = 3x2∆x+3x∆x2+∆x3; dy=3x2∆x (взяли главную линейную относительно ∆x часть ∆y). В данном случае α(∆x)∆x = 3x∆x2 + ∆x3.

надеюсь правильно

Выражение x^2dy=3y^2dx, y(1)=2 для дальнейших вычислений представлено в математическом виде как x^2*d3*y^2*dxy*(1). В этом выражении необходимо правую часть перенести со знаком минус в левую часть

4,5(39 оценок)
Ответ:
мαрия
мαрия
18.07.2020
Есть 2 варианта ответа.
1) Оставить ответ такой, какой получился. Ведь переменная х - это угол. А arc sin(1/3)  и есть угол.
Чтобы определить значение х в заданном промежутке, надо их приравнять.
1 ответ: х = πk:
πk = -π        k = -1        x = -π.
πk = 3π/2     k = 3/2      Целое значение k = 1.
Есть ещё 2 значения к между ними:
к =0    х = 0,
к = 1   х = π.
2 ответ:
x = arc sin(1/3) + 2πk:
Так как угол  arc sin(1/3) больше 0 и меньше π/2, то заданный промежуток можно выразить так:
левый предел:-π - 2πk < π/2, сократим на π:
-1 - 2k < 1/2,
2k > -1 - (1/2) ,
k > -3/4. То есть ближайшее целое значение к = 0,
правый предел: 3π/2 - 2πk < π/2,
3/2 - 2k < 1/2,
2k > (3/2) - (1/2) = 2/2 = 1,
k > 1/2.
Если принять значение k = 1, то тогда корень равен x = arc sin(1/3) + 2π, что больше 3π/2.
Значит, k = 0.
Корень равен: x = arc sin(1/3).

3 ответ:
x = π - arc sin(1/3) + 2πk (именно минус после π).
-π = arc sin(1/3) + 2πk,
-π - 2πk < π/2,
-1 - 2k < 1/2,
2k > -1 -(1/2),
2k >-3/2,
k > -3/4.
То есть ближайшее целое значение к = 0.
Корень равен: x = π - arc sin(1/3).

Итого 5 значений:
1) х = -π;
2) х = 0;
3) х = arc sin(1/3);
4) x = π - arc sin(1/3);
5) x = π.

2) Можно выразить в цифровом виде, найдя arc sin(1/3) в радианах: arc sin(1/3) =  0.339837 радиан.
В заданном промежутке 5 значений х:
1) х = - 3,141593;
2) х = 0;
3) х = 0,339837;
4) х = 2,801756;
5) х = 3,141593.
4,6(33 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ