М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Yanuska224
Yanuska224
30.05.2022 18:56 •  Математика

Как составить уравнение, если дана корень уравнения? например, корень = 5

👇
Ответ:
dmitrosevchuk
dmitrosevchuk
30.05.2022

Смотри пишешь Х + ( и в уме придумываешь какое Х число, например 2) далее пишешь ту цифру которую надо прибавить к Х, чтобы получить 5, в данном случае 3.

Пошаговое объяснение:

Х + 3 = 5

Х = 5 - 3

Х = 2

Тоже самое можно делать с вычитанием, умножением, делением

Надеюсь хоть немного

4,5(14 оценок)
Ответ:
farangizuk
farangizuk
30.05.2022

Решение квадратных уравнений

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

Не имеют корней;

Имеют ровно один корень;

Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант. Дискриминант Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

Если D < 0, корней нет;

Если D = 0, есть ровно один корень;

Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:Задача. Сколько корней имеют квадратные уравнения:

x2 − 8x + 12 = 0;

5x2 + 3x + 7 = 0;

x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:

a = 1, b = −8, c = 12;

D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16 Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:

a = 5; b = 3; c = 7;

D = 32 − 4 · 5 · 7 = 9 − 140 = −131.Дискриминант отрицательный, корней нет. Осталось последнее уравнение:

a = 1; b = −6; c = 9;

D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.Дискриминант равен нулю — корень будет один.Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.Корни квадратного уравнения Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:Формула корней квадратного уравнения Основная формула корней квадратного уравнения Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

4,7(3 оценок)
Открыть все ответы
Ответ:
vikaivanyk
vikaivanyk
30.05.2022
Простое предложение может быть односоставным (один главный член) и двусоставным (оба главных члена - подлежащее и сказуемое) .
Односоставные бывают двух видов: назывные (если главный член - подлежащее) и 4 группы, если главный член-сказуемое, это: определенно-личные, безличные, неопределенно-личные, обобщенно-личные.
Также простые предложения по типу высказывания делятся на: повествовательные, вопросительные, побудительные.
По интонации простые предложения могут быть восклицательными и невосклицательными.
Если есть второстепенные члены, то простое предложение является распространенным, если только подлежащее и сказуемое, то нераспространенное.
4,4(59 оценок)
Ответ:
ziksharof
ziksharof
30.05.2022

Пошаговое объяснение:

В математике есть много подобных «доказательств». В том числе есть и «доказательство» того, что 2*2=5. Но все эти «доказательства» содержат в себе ошибки, но бывает, что их трудно сразу обнаружить. Ученые такими доказательствами не занимаются. Только шутники, которые неплохо знают математику.

То, что 2+2=5 есть много разных «доказательств». Приведу самое Представим равенство: 20-20=25-25. Выносем множители: 4(5-5)=5(5-5) и разделим на общий множитель (5-5). Получим 4=5. Следовательно, 2+2=5. Попробуйте найти здесь ошибку. А всё очень А в математике делить на ноль нельзя.

Ещё одно «доказательство». 2+2=5. Преобразуем это равенство 2 * 1 + 2 * 1 = 5 * 1. Распишем 1 как частное равных чисел: Имем 1 = (5-5)/(5-5). Тогда получим 2 * (5-5)/(5-5) + 2 * (5-5)/(5-5) = 5 * (5-5)/(5-5). Умножим обе части уравнения на(5-5), тогда имеем 2*(5-5) + 2*(5-5) = 5*(5-5) Отсюда получим 0 + 0 = 0. Это доказательство похоже на предыдущее, но лихо закрученное. Здесь также нельзя делить на ноль.

А вот ещё более сложное «доказательство». Докажем что 2+2=5 и 2 * 2 = 5, тоже равно 5. То есть 4=5 . Запишем сначала очевидное равенство 25 - 45 = 16 - 36 . Прибавим (9/2)^2 к обеим частям 25 - 45 + (9/2)^2 = 16 - 36 + (9/2)^2. Или 5^2 - (2 * 5 * 9)/2 + (9/2)^2 = 4^2 - (2 * 4 * 9)/2 + (9/2)^2. Отсюда(5-9/2)^2 = (4-9/2)^2. Обе части положительны, можно извлечь квадратный корень. 5 - 9/2 = 4 - 9/2. Теперь прибавим 9/2 к обеим частям уравнения: 5 = 4 что и требовалось доказать. Итак, 2*2 = 5 и 2+2=5. Где здесь ошибка в доказательстве?

4,7(93 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ