Да, можно. пример в документе.
Пошаговое объяснение:
Так как конь бьёт максимум 8 клеток, то ровно 2 из них может ограничить только "круг" на шахматной доске, образованный конями. Так как любую связь можно разорвать ещё одним конём необходимо, чтобы каждый стоял относительно другого в "недосягаемой зоне" - клетка того же цвета. Так как шахматная раскраска и ходы коня не совпадают, то в любую конечную цепочку коней мы сможем добавить еще одного, чтобы условия выполнялись.
Пример в документе - кони - чёрные клетки.
800*600*16 (16 бит на пиксель это 65 536 цветов)=7680000 - бит информационный вес одного поля кадра.
Допустим частота обновления экрана монитора 60 Гц, тогда
7680000*60 (Гц)=460800000 бит в секунду * 60 (секунд)= 27648000000 бит - информационная емкость потока фильма в течении 1 минуты.
Постичаем в байтах
27648000000/8/1024/1024/1024=3.2186 Гигабайт - объём информационного потока
Задача №3
за одну секунду пройдет 36 мегабайт
2 часа = 7200 секунд *36=259200 мегабайт=253.12 Гбайт
Р.S. Это только в файле ваши фильмы нетакие большие, а при проигрывании при декомпрессии по шине памяти и по вашим HDMI проводам именно такие потоки и идут
Пошаговое объяснение:
1. Разложим число 144 на простые множители:
144/2=72; 72/2=36; 36/2=18; 18/2=9; 9/3=3; 3/3=1
144=2·2·2·2·3·3
А теперь перемножим эти числа между собой так, чтобы полученные значения входили в интервал от 10 до 51.
2·2·2·2=16
2·2·2·2·3=48
2·2·2·3=24
2·2·3=12
2·2·3·3=36
2·3·3=12
Итак, значения x, являющиеся делителями числа 144, - это 12; 16; 24; 36 и 48.
2. b=7-3=4
3. 24/7=3 с остатком 3. Значит к числу 24 нужно прибавить 7-3=4, чтобы делилось на 7:
24+4=28.
Допустим максимальное двузначное число x: 99.
Тогда 99-28=71.
Зная таблицу умножения можно легко найти число , которое делится на 7, это 70 (70/7=10).
Находим наибольшее двузначное число x:
70+24=94
ответ: 94.
4. Находим наибольший общий делитель:
НОД (1095; 742)=1
1095/3=365; 365/5=73; 73/73=1; 1095=3·5·73
742/2=371; 371/7=53; 53/53=1; 742=2·7·53
Как видим, общий множитель числа будет 1.
Так что я доказываю обратное, что числа 1095 и 742 являются взаимно простыми, так как они не имеют общих делителей, кроме 1.