Так как в графе есть хотя бы одна вершина степени 5, есть хотя бы одна компонента с вершиной данной степени. Рассмотрим её. Кроме вершины степени 5 в этой компоненте не менее 5 вершин. Значит, в компоненте связности с вершиной степени 5 не менее шести вершин. Аналогично, в компоненте связности с вершиной степени 2 не менее трёх вершин. Значит, компонент не более 1 + (18 - 6) : 3 = 5.
Докажем, что любое количество компонент от 1 до 5 быть может. Сперва построим пример для 5 компонент. Пусть в одной компоненте две вершины степени 5 соединены ребром, а остальные вершины - вершины степени 2, присоединённые к обоим. Итого 6 вершин на одну компоненту. Остальные компоненты связности представлены циклами длины 3 из вершин степени 2.
Если требуется от 2 до 4 компонент, "склеим" две компоненты-цикла в одну, увеличив цикл.
Если требуется одна компонента, построим компоненту из шести вершин по примеру выше, а затем вместо ребра, соединяющего вершины степени 5, проложим путь из вершин степени 2.
ответ: От 1 до 5.
(P.S. Но это если граф обыкновенный, а в графе с петлями и кратными рёбрами можно устроить от 1 до 17 компонент.)
Так как в графе есть хотя бы одна вершина степени 5, есть хотя бы одна компонента с вершиной данной степени. Рассмотрим её. Кроме вершины степени 5 в этой компоненте не менее 5 вершин. Значит, в компоненте связности с вершиной степени 5 не менее шести вершин. Аналогично, в компоненте связности с вершиной степени 2 не менее трёх вершин. Значит, компонент не более 1 + (18 - 6) : 3 = 5.
Докажем, что любое количество компонент от 1 до 5 быть может. Сперва построим пример для 5 компонент. Пусть в одной компоненте две вершины степени 5 соединены ребром, а остальные вершины - вершины степени 2, присоединённые к обоим. Итого 6 вершин на одну компоненту. Остальные компоненты связности представлены циклами длины 3 из вершин степени 2.
Если требуется от 2 до 4 компонент, "склеим" две компоненты-цикла в одну, увеличив цикл.
Если требуется одна компонента, построим компоненту из шести вершин по примеру выше, а затем вместо ребра, соединяющего вершины степени 5, проложим путь из вершин степени 2.
ответ: От 1 до 5.
(P.S. Но это если граф обыкновенный, а в графе с петлями и кратными рёбрами можно устроить от 1 до 17 компонент.)
360 км - проехал второй автобус
225 км - проехал первый автобус
Пошаговое объяснение:
t - время в пути у двух автобусов одинаковое, т.к. ехали одновременно навстречу друг другу)
По условию задания известно:
V₁ = 45 км/час - скорость первого автобуса
V₂ = 72 км/час - скорость второго автобуса
S₂ - S₁ = 135 км (первый автобус проехал на 135 км меньше, чем второй)
Значит:
S₁ = V₁ * t - расстояние, которое проехал первый автобус
S₂ = V₂ * t - расстояние, которое проехал второй автобус
S₂ - S₁ = 135
V₂ * t - V₁ * t = 135
72t - 45t = 135
27t = 135
t = 135/27
t = 5 (часов) - время в пути каждого автобуса
S₂ = V₂* t = 72км/ч * 5ч = 360 км - проехал второй автобус
S₁ = V₁* t = 45км/ч * 5ч = 225 км - проехал первый автобус
Проверим:
360 км - 225 км = 135 км - первый автобус проехал на 135 км меньше, чем второй