SABCD -правильная четырехугольная пирамида. Постройте сечение пирамиды плоскостью, проходящей через DO (точка О-внутренняя точка отрезка SC) и перпендикулярной плоскости ABC.Если искомая площадь перпендикулярна плоскости АВС, то она перпендикулярна плоскости АВСD. Проведем диагональное сечение АSС пирамиды .О лежит на ребре SC и принадлежит этому диагональному сечению. Опустим в плоскости ∆ ASC из О перпендикуляр ОН на АС (он лежит в плоскости диагонального сечения, перпендикулярной основанию, параллелен высоте пирамиды, и потому перпендикулярен её основанию). Через D и Н проведем прямую до пересечения с ВС в точке К. Соединим D, О и К. Через 3 точки можно провести плоскость, притом только одну. Плоскость ∆ DОК - сечение пирамиды. Если плоскость проходит через прямую перпендикулярную другой плоскости, то эти плоскости перпендикулярны.Плоскость ∆ DОК проходит через ОН, перпендикулярный плоскости основания, и является искомым сечением
abcd - некоторое четырехзначное число, где
Если число делится на 45, значит оно делится и на 9, и на 5 одновременно:
Так как искомое число делится на 5, значит последняя цифра в числе может быть либо 5, либо 0.
Так как искомое число делится на 9, значит сумма цифр числа делится на 9:
1) Если
2) Если
а)
так как a, b, c, d - цифры, тогда
Найдем перебором:
получим числа: 1125; 1215; 2115
б)
в)
так как a, b, c, d - цифры, тогда
г)
учитывая, что
В ответе можно указать любое из этих чисел: 1125; 1215; 2115