М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shuraKotokoto
shuraKotokoto
11.05.2023 16:13 •  Математика

Начертите квадрат со сторонами 4 см и найдите площадь и периметр​

👇
Ответ:
HИKTO
HИKTO
11.05.2023

ответ:P=16cm; S=16cm

Пошаговое объяснение: P=a*4=4cm*4=16cm

S=a*a=4cm*4=16cm

4,4(99 оценок)
Открыть все ответы
Ответ:
KrIs1girl
KrIs1girl
11.05.2023
1. а) Сравнить числа:
3,258 < 4,2;
6,381 < 6,4;
0,95 > 0,9499.

б) Выразить в метрах:
3 м 321 мм=3м+0,321м=3,321 м≈3,32 м
5 м 80 мм=5 м+0,08 м=5,08м
473 мм=0,473м≈0,47м
5 мм=0,005м

3.Округлить:
а) 5,2; 20,7; 361,5 и 0,4 (до единиц);
б) 0,62; 15,24; 4,37 и 0,01 (до сотых).

4. Собственная скоpость теплохода 53,2 км/ч. Скоpость теплохода пpотив течения pеки 50,5 км/ч. Найди скоpость теплохода по течению.
1) Вычислим скорость течения реки: 53,2-50,5=2,7 км/ч
2) 53,2+2,7= 55,9 (км)

5. Запиши четыpе значения a, пpи котоpых веpно неpавенство:
17,5>а>2,13 (а= 2,99; 5; 9,5; 17,4)
96,2 >а>4,09 (а=10; 40;50;96,1)
0,39 >а>0,046 (а=0,049; 0,05; 0,25; 0,38)
6 >а>3,54 (а=3,59; 4; 4,5; 5,9)
0,33<а<0,36 (а=0,34; 0,35; 0,345; 0,355)
4,7(77 оценок)
Ответ:
катерина424
катерина424
11.05.2023

ответ: (e-1)/3

Пошаговое объяснение:

Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.

                                            \int{e^{x^{3} }x^2 } \, dx.

Пусть u=x^3, тогда x=\sqrt[3]{u}.

                              du = 3x^2dx \\ dx = \frac{du}{3x^2} = \frac{du}{3(\sqrt[3]{u} )^{2}} = \frac{du}{3u^{2/3}}

Делаем подстановку в наше изначальное выражение:

                                      \int{e^{x^{3}}x^2dx}=\int{e^{u}(\sqrt[3]{u})^{2}\frac{du}{3u^{2/3}} } = \int{ e^uu^{2/3}\frac{du}{3u^{2/3}} }

Здесь u^{2/3} сокращаются и мы имеем \int{e^u\frac{du}{3}}. Выносим \frac{1}{3} за интеграл: \frac{1}{3} \int{e^u} \, du. Теперь мы имеем знакомый интеграл, который равняется \frac{1}{3} (e^{u}+C), тоже самое что \frac{1}{3} e^u+C. Подставляем u=x^3 и имеем \frac{1}{3}e^{x^3}+C. Используем фундаментальную теорему исчисления:

\int\limits^1_0 {e^{x^3} x^2} = \frac{1}{3} e^{x^3}]_0^1=\frac{1}{3} e^{1^3}-\frac{1}{3} e^{0^3}=\frac{1}{3} e^1-\frac{1}{3} e^0=\frac{1}{3} e-\frac{1}{3}=\frac{e-1}{3}

                 

4,4(87 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ