Дифференциальным уравнением первого порядка называется уравнение вида
F(x, y, y
′
) = 0, (0.1)
в котором x — независимая переменная, y(x) — неизвестная функция. Дифференциальным уравнением первого порядка, разрешенным относительно
производной, называется уравнение
dy
dx = f(x, y). (0.2)
Правую часть уравнения (0.2) будем считать определенной на некотором открытом множестве D плоскости (x, y). Иногда уравнение (0.2) записывают
в виде
M(x, y) dx + N(x, y) dy = 0 (0.3)
и называют уравнением первого порядка, записанным в дифференциалах.
Решением уравнения (0.2) (или (0.3)) на интервале I оси x называется
любая дифференцируемая функция y = φ(x), которая при подстановке в
уравнение обращает его в тождество на I . Общим решением уравнения (0.2)
называется множество всех его решений. Общее решение зависит от одной
произвольной постоянной C и дается формулой
y = φ(x, C). (0.4)
Выражение вида
Φ(x, y, C) = 0, (0.5)
из которого y определяется неявно как функция от x называется общим
интегралом уравнения (0.2).
Решить уравнение (0.2) означает найти его общее решение или общий интеграл. При этом предпочтение, как правило, отдается более компактной записи ответа.
Формы записи уравнения в виде (0.2) или (0.3) равносильны и из одной
записи можно получить другую. Однако, в некоторых случаях, форма записи (0.3) оказывается предпочтительнее, так как в нее переменные x и y входят симметрично. Поэтому, если независимую переменную и искомую функцию поменять местами (разрешить уравнение относительно dx
dy ), то общее решение x = ψ(y, C) полученного уравнения определит
Пошаговое объяснение:
m=7
Пошаговое объяснение:
8(12m+27)+5(31-17m)=448
сначала упростим выражение раскрыв скобки и приведя подобные члены , затем найдем неизвестное. Если перед скобками стоит знак " -" , то при раскрытии скобок меняем знаки на противоположные:
8(12m+27)+5(31-17m)=448
8*12m + 8*27 + 5*31- 5*17*m = 448
96m +216 + 155 - 85m = 448
96m - 85 m = 448 - 216 - 155
11 m = 77
m= 77: 11
m=7
Проверка :
должно получится верное равенство
8*(12*7+27)+5*(31-17*7)=448
8*111 + 5*(-88) = 448
888 - 440 = 448
448 = 448
равенство верное
1) 5x-x=53 переносим Известне в одну сторону неизвестные в другую
4x=32
x=8