3x-15=2(x+4)
3x-15=2x+8
3x-2x-15=8
3x-2x=8+15
(3-2)x
1x
x=8+15
x=23
4600
Пошаговое объяснение:
Одна из формул нахождения суммы первых 50 членов арифметической прогрессии такова:
S_n = (a_1 + a_n)/2 * n
В данном случае она будет выглядеть вот так:
S_50 = (-6 + a_50)/2 * 50 (-6 является 1 членом арифм. прогрессии)
Здесь можно сразу же сократить 2 и 50 и получить 25
Формула будет иметь вид: S_n = (a_1 + a_n) * 25
Любой член арифм. прогр. находится по формуле: a_n = a_1 + d * (n - 1)
d находится по формуле: d = a_n+1 - a_n
В данном случае d = 4 (можно схитрить и найти d через a_2 и a_3 =>
d = a_3(2) - a_2(-2) => 2 - (-2) = 4)
Находим a_50 => a_1(-6) + 4 * (50-1) => -6 + 4 * 49 = -6 + 196 = 190
S_50 = (a_1(-6) + a_50(190) ) * 25 => (-6 + 190) * 25 = 4600
4600
Пошаговое объяснение:
Одна из формул нахождения суммы первых 50 членов арифметической прогрессии такова:
S_n = (a_1 + a_n)/2 * n
В данном случае она будет выглядеть вот так:
S_50 = (-6 + a_50)/2 * 50 (-6 является 1 членом арифм. прогрессии)
Здесь можно сразу же сократить 2 и 50 и получить 25
Формула будет иметь вид: S_n = (a_1 + a_n) * 25
Любой член арифм. прогр. находится по формуле: a_n = a_1 + d * (n - 1)
d находится по формуле: d = a_n+1 - a_n
В данном случае d = 4 (можно схитрить и найти d через a_2 и a_3 =>
d = a_3(2) - a_2(-2) => 2 - (-2) = 4)
Находим a_50 => a_1(-6) + 4 * (50-1) => -6 + 4 * 49 = -6 + 196 = 190
S_50 = (a_1(-6) + a_50(190) ) * 25 => (-6 + 190) * 25 = 4600
3х-15=2х+8
3х-2х=8+15
х=23
Вроде так, но лучше посмотри другой ответ