Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ; В следующих двух слагаемых вынесем общий множитель "40": ; В итоге получим следующее уравнение: . В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо будет стоять ; Это приведет к тому, что придется убавить ; В итоге: ; Слева стоит квадрат суммы. Уравнение примет вид: ; Сворачивая еще раз: ; Получаем серию прямых: ; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом ; Рассмотрим прямую ; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников. ; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты ; Ну а все решения:
определение. линейным уравнением с двумя переменными называется уравнение вида
mx + ny = k, где m, n, k – числа, x, y – переменные.
пример: 5x+2y=10
определение. решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.
уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.
1. 5x+2y=12 (2)y = -2.5x+6
данное уравнение может иметь сколько угодно решений. для этого достаточно взять любое значение x и найти соответствующее ему значение y.
пусть x = 2, y = -2.5•2+6 = 1
x = 4, y = -2.5•4+6 =- 4
пары чисел (2; 1); (4; -4) – решения уравнения (1).
данное уравнение имеет бесконечно много решений.
280
Пошаговое объяснение:
An = 7+(8-1)×8=63
Sn = (7+63)/(2)×8=280