Пусть х количество десятков, у кол. единиц в числе , тогда двузначное число можно записать так: 10х+у , а после перестановки оно будет вот таким: 10у+х, сказано, что оно уменьшится на 16. составим уравнение 10х+у=10у+х+16 выразим х через у 9х=9у+16 х=(9у+16)/9 у может быть любым числом от 0 до 9 проверяем: если у=0 х=16/9 чего не может быть, те это количество десятков и число должно получится от 1 до9 если у=1 х=34/9 не может быть и так далее при у=7 х=9 те искомое число 97 а число 79 на 16 меньше.
ответ: x = - 1.
Пошаговое объяснение:
Решим уравнение через дискриминант.
(- x - 4) * (3x + 3) = 0
- 3x² - 3x - 12x - 12 = 0
- 3x² - 15x - 12 = 0
D = b² - 4ac = (- 15)² - 4 * (- 3) * (- 12) = 225 - 144 = 81
x₁ = (- b - √D)/(2a) = (- (- 15) - √81)/(2 * (- 3)) = (15 - 9)/(- 6) = 6/(-6) = - 1
x₂ = (- b + √D)/(2a) = (- (- 15) + √81)/(2 * (-3)) = (15 + 9)/(- 6) = 24/(- 6) = - 4
- 1 > - 4 ⇒ в ответ записываем x = - 1.
Решим уравнение через разложение трёхчлена.
(- x - 4) * (3x + 3) = 0
[ - x - 4 = 0 x₁ = - 4
⇒
[ 3x + 3 = 0 x₂ = - 1
- 1 > - 4 ⇒ в ответ записываем x = - 1.