Для правильного решения уравнений нужно уметь пользоваться математическим языком. Словами математического языка являются числовые и буквенные выражения.
Математические выражения могут состоять из одного числа или из одной буквы:
42
z
Или из двух и более чисел и букв, соединённых знаками арифметических действий:
a − 4
2x
x + y
В записи выражений никогда не применяются знаки равенств и неравенств.
= ; ≠ ; > ; < ; ≥ ; ≤
Знаки выше служат для записи равенств и неравенств.
Математические выражения делятся на числовые и буквенные.
Выражение называют числовым, если оно не содержит букв. Примеры числовых выражений:
8
3 · 4
5 : 1
41 + 2 · 3
Если выполнить все действия, содержащиеся в числовом выражении, то получится числовое значение выражения.
Пример:
Запись «30 · 5 + 40» — это числовое выражение.
Выполнив все действия, получим число «190» — числовое значение выражения.
Если какое-либо число в числовом выражении заменить буквой, то полученное выражение называют буквенным.
7t + 5
ab − c
25:5 − y
Читаются буквенные выражения следующим образом.
«4a» − четыре «a»
Более сложные выражения начинают читать по последнему выполняемому действию.
Пошаговое объяснение:
Пошаговое объяснение:
Пусть z км проплыли туристы по течению реки, тогда против течения они проплыли (19−z) км.
7−1=6 км/ч — скорость лодки против течения реки,
7+1=8 км/ч — скорость лодки по течения реки.
Чтобы найти время, надо расстояние делить на скорость, поэтому:
19−z6 ч — время, затраченное туристами на путь против течения реки, а
z8ч — время, затраченное туристами на путь по течения реки.
Зная, что в пути туристы были менее трёх часов, составим неравенство:
19−z6+z8<3
Чтобы избавиться от дроби, умножим обе части неравенства на 48.
(19−z6+z8)⋅48<3⋅4819−z6⋅48+z8⋅48<1448⋅(19−z)+6⋅z<144152−8z+6z<144−2z<−8:(−2)z>4
ответ: 4<z<19 км.