Найти общую площадь поверхности равностороннего треугольника с осевым сечением конуса, стороны которого составляют 16 см, а угол между ними составляет 120 °.
Надо построить треугольник, площадь которого равна площади трапеции. Пусть трапеция ABCD, AD II BC. Из С проводим прямую II диагонали BD до пересечения с продолжением AD. Пусть это точка Е. Ясно, что DBCE - параллелограмм. Треугольник ACE имеет ту же высоту, что и трапеция - это расстояние от С до AD (обозначим эту высоту СН), а АЕ = AD + BC. Очевидно, что площадь АСЕ равна площади ABCD ( = СН*(AD + BC)/2). Стороны треугольника АСЕ это AC = 15; СЕ = BD = 20; AE = AD + BC = 2*12,5 = 25. Не трудно убедится, что это треугольник, подобный "египетскому" - со сторонами (3,4,5). То есть это прямоугольный треугольник, и его площадь равна 15*20 / 2 = 150. ответ - площадь трапеции 150.
шаг 1: находим координаты х точек перечечения графиков y=x^2+1 и y=-x+3.
x^2+1 = -x+3; x^2+x-2 = 0; x1 = -2; x2 = 1.
шаг 2: находим определенный интеграл функции y = -x+3 в пределах от -2 до 1.
первообразная этой функции будет y = -1/2*x^2 + 3x + с
подставляя пределы интегрирования получаем площадь под функцией s1 = -1/2 + 3 + 2 + 6 = 10,5.
шаг 3: находим определенный интеграл функции y = x^2+1 в пределах от -2 до 1.
первообразная этой функции будет y = 1/3*x^3 + x + с
подставляя пределы интегрирования получаем площадь под функцией s2 = 1/3 + 1 + 8/3 +2 = 6.
шаг 4: s = s1-s2; s = 10,5-6; s = 4,5.