Наименьшее значение подкоренное выражение достигает при а=0, оно равно 9, а корень из 9 равен трем, в то время как в числителе получаем 10, но 10/3 больше 3, а, значит, и подавно больше двух.
Если же а не равное нулю, то (а²+10)/√(а²+9)=((а²+9)+1)/√(а²+9)=
√(а²+9)+1/√(а²+9), только что доказали, что при а=0, получаем самое маленькое значение дроби, а если взять любое другое число, положительное, или отрицательное, то квадрат этого числа увеличит подкоренное выражение, и корень будет больше трех, а значит, и двух, да еще добавка в виде положительной дроби
1/√(а²+9) только добавит положительное число. Поэтому исходное выражение в задачи не будет меньше двух.
Здравствуй! Это не составляет большого труда, нужно просто понять :)
Запомните! Когда вы видите предлог "на" как в этой задаче, то мы всегда из большего вычитаем меньшее. Запомните! Когда вы видите предлог "в", то мы всегда большее делим на меньшее.Задача № 1.Мария собрала - 10 (яблок).
Пётр собрал - 7 (яблок).
На сколько штук Мария собрала больше яблок, чем Пётр?
1) 10 - 7 = на 3 (яблока).
ответ: на 3 штуки Мария собрала больше яблок, чем Пётр.
Задача № 2.Бабушка сшила - 15 (варежек).
Внучка сшила - 8 (варежек).
На сколько штук внучка сшила меньше варежек, чем бабушка?
1) 15 - 8 = на 7 (варежек).
ответ: на 7 штук внучка сшила меньше варежек, чем бабушка.
Пошаговое объяснение:10. Если две плоскости имеют общую точку, то они:
В) пересекаются по прямой, проходящей через эту точку
11. Через прямую и не принадлежащую ей точку проходят:
А) единственная плоскость
12. отрезок СД лежит в плоскости α. Концы отрезка ЕМ лежат в параллельных С) СД и ЕМ скрещивающиеся прямые