М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
марина1924
марина1924
30.10.2020 03:51 •  Математика

Найдите все полиномы Р(x), для которых P^2(x)-2=2P(2x^2-1)

👇
Ответ:
ubfhbc
ubfhbc
30.10.2020

Преобразуем: P^2(x)=2P(2x^2-1)+2\Leftrightarrow \frac{P^2(x)}{2}=P(2x^2-1)+1. Сделаем замену: x\to \frac{P(x)}{2} (полином имеет значение в любой точке), тогда: \frac{P^2(\frac{P(x)}{2}) }{2}=P(\frac{P^2(x)}{2}-1)+1=P(P(2x^2-1))+1. Отсюда: 2(\frac{P(\frac{P(x)}{2} )}{2})^2= P(P(2x^2-1))+1, поскольку  2(\frac{P(\frac{P(x)}{2} )}{2})^2=\frac{P^2(\frac{P(x)}{2}) }{2}. Пусть f_{k} обозначает примененную k раз композицию функции \frac{P(x)}{2} с самой собой. Аналогичным образом связана функция g_{k} с функцией P(2x^2-1). Продолжая вышеуказанные подстановки, приходим к равенству 2f_{k}^2=g_{k}+1,\; \forall k\in\mathbb{N}_{0}. Теперь: g(2f_{k}^2-1)=2f^2(2f_{k}^2-1)-1, поскольку g(x)=2f(x)-1 (здесь f,g=f_{0},g_{0}). Но g(2f_{k}^2-1)=g(g_{k})=g_{k+1}=2f_{k+1}^2-1,  значит, 2f_{k+1}^2-1=2f^2(2f_{k}^2-1)-1 \Leftrightarrow f_{k+1}=\pm f(2f_{k}^2-1), но старший коэффициент f_{k} положителен, откуда f_{k+1}=f(2f^2_{k}-1). Пусть старший коэффициент f_{k} равен a_{k}. Предположим, что a_{0}\neq 0. Посчитаем старший коэффициент слева: f_{k+1}=f(f_{k})\Rightarrow a_{k+1}=a_{0}a_{k}^n, где n — степень многочлена f. Старший коэффициент справа равен старшему коэффициенту f(2f_{k}^2) и равен a_{0}\times2^n\times a_{k}^{2n}. Приравниваем: 2^na_{0}a_{k}^{2n}=a_{0}a_{k}^n \Rightarrow (2a_{k})^n=1 \Leftrightarrow a_{k}=1/2 (поскольку a_{0}\neq 0). В частности, a_{0}=1/2.

Заметим, что старший коэффициент P(x) равен 2^{n+1} (в этом несложно убедиться). Тогда a_{0}=2^{n+1}/2=2^{n}=1/2, но такого натурального n нет. Стало быть, a_{0}=0, то есть P(x) константа. Пусть P(x)=c: c^2-2=2c \Leftrightarrow c= 1\pm\sqrt{3}.

4,4(89 оценок)
Открыть все ответы
Ответ:
ladysachenko20
ladysachenko20
30.10.2020
Всё решается очень просто, через производную функции.
Например, чтобы найти максимум и минимум для данной функции, надо найти её производную:
(8x / (x^2 + 4))"=(8х^2+32-16x^2)/(x^2 + 4)=(32-8x^2)/(x^2 + 4)^2
Приравниваем к 0 и решаем уравнение:
32-8x^2=0
x1=-2
x2=2
Обратно подставляем эти значения, в функцию, и находим, что минимум
8x / (x^2 + 4)=-16/8=-2
максимум
8x / (x^2 + 4)=16/8=2
Знаменатель функции не может быть равен 0, ни при каком значении "х", значит график не имеет точек разрыва.
Для более точного построения, можно взять ещё несколько значений "х". График будет симметричен (зеркально отображён) 
4,4(73 оценок)
Ответ:
Polinadonut
Polinadonut
30.10.2020

1) Позвольте рассуждать так: выражение в скобках, возведённое в квадрат(по условию задания) всегда, при любых положительных или отрицательных числах значения х, будет положительным числом. А тут к тому же второе слагаемое 4 также положительно. Что не оставляет нам выбора, как только выяснить, какое наименьшее значение будет в скобках.

2)Теперь вопрос, а какое число считать наименьшим среди положительных чисел?( смело будем считать, что это число 0, т.к оно не относится ни к отрицательным ни к положительным числам).

3) Тогда чтобы получить в выражении в скобках 0, надо чтобы х=5

4) Итак (5-5)²+4=0+4=4

Пошаговое объяснение:

4,8(79 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ