Сможет. Длина прыжка кузнечика 5 единиц. Он может прыгнуть в любом направлении от точки 0 координатного луча на 5 единичных отрезков. Для того, чтобы из точки 0 попасть в точку 4, кузнечику достаточно 3-х прыжков. Как он это сделает - см. рисунок в приложении. Для тех, кто знаком с окружностью и радиусом, подробное объяснение. Пусть он прыгнет вверх на 5 единиц. .Это будет точка К-1. Из этой точки в любую сторону сможет прыгнуть опять же на 5 единиц. Если из точки 4 провести отрезок длиной 5 единиц до пересечения с воображаемой окружностью, до границ которой из точки К-1 кузнечик может допрыгнуть, то это будет точка К-2. Вот туда кузнечик прыгнет, а оттуда на расстояние 5 единиц попадет в точку 4.
В году в среднем 365 дней. В среднем 52-53 понедельника. Пусть все числа в году будут под номерами от 1 до 365. Тогда 13 число месяца ( начиная с января) встречается в следующие по счету дни: 13 , 13+31= 44 , 44+28= 72 , 72+31=103, 103+30=133, 133+31= 164, 164+30= 194, 194+31= 225, 225+30 = 255, 255+31= 286, 286+30 = 316, 316+31 = 347 Теперь сколько раз повторяются дни недели (разделим на 7, посмотрим остатки) 13:7= 1 ост.6 72 :7 = 10 ост.2 103: 7 = 14 ост. 5 133: 7= 19 ост.0 164:7 = 23 ост. 3 194:7= 27 ост.5 225 : 7=32 ост.1 255 :7 =36 ост.3 286 :7=40 ост. 6 316 : 7= 45 ост.1 347:7=49 ост.4 Если мыслить логически , то все остатки от 0 до 6 ( пн.-воскр.) присутствуют , т.е. на 13 число может выпасть любой день недели. Остаток 0 - выпадает один раз , значит наименьшее количество понедельников с 13 числом - 1 день в году. Остаток 3 - выпадает больше раз, чем все остальные числа - 3 раза , значит наибольшее количество понедельников с 13 числом - 3 раза в год . ответ: 3 раза в год - наибольшее количество понедельников с 13 числом. Может и можно решить как-то проще, но .. я не знаю как.
сколько стульев стояло в комнате и на сколько креаел меньше чем кресел
1)2+4=6 (стульев)
2)6-4=2 на 2 меньше
ответ :стульев в комнате было 6 ,кресел на 2 меньше чем стульев