Пошаговое объяснение:
Нам необходимо перемножить две десятичные дроби. Для начала представим их в виде неправильных дробей:
- в данной дроби 25 целых и 45 сотых. Запишем это в виде дроби с целой частью: 
Для удобства, мы можем сократить дробную часть на 5 в числителе и знаменателе: 
Теперь переведем в неправильную дробь: 
Далее, разберемся с дробью
. Запишем ее в виде:
, сократим числитель и знаменатель на 2:
.
Теперь запишем произведение двух преобразованных дробей:
. Имеем право сократить числитель второй дроби со знаменателем первой, получим:
.
Получили неправильную дробь, из которой нужно выделить целую часть. В 509 20 целых частей, так как ближайшее число, которое делится на 25, это 500, а 9 получаем в остатке. Запишем:

Чтобы вернуться обратно в десятичную дробь, необходимо знаменатель домножить на 4, чтобы он стал равен 100, получим:

1) PQRS-ромб, заодно показывается равность треугольничков у вершин прямоугольника (как прямоугольные с равными катетами, по половине стороны прямоугольника)
2) а в ромбе такой треугольник равен 4 себе подобным (прямоугольным с равными половине диагонали ромба сторонами) (ромб - параллелограмм⇒диагонали точкой пересечения делятся попалам)также в этом пункте можно отметить, что диагонали ромба равны сторонам прямоугольника
3) и равенство этих групп 3/угольничков, можно провести по любому признаку равенства треугольников (по трем сторонам, или по гипотенузе и катету, или по двум катетам)