М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kcenigolovaxa
kcenigolovaxa
25.06.2022 06:54 •  Математика

приведите дроби к наименьшму общему знаменателю и сравните их 3/4 и 5/6 5/12 и 7/18 1/2 и 4/9 2/3 и

👇
Открыть все ответы
Ответ:
narek2006
narek2006
25.06.2022
Для решения данной задачи мы будем использовать основные свойства впрямоугольного параллелепипеда и тригонометрические соотношения.

1. Найдем длину ребра cc1 параллелепипеда:
В параллелепипеде cc1 принимает форму высоты, проходящей через вершину c и перпендикулярной плоскости abcd. Отрезок ca1 является диагональю основания abcd, поэтому его длина будет равна гипотенузе прямоугольного треугольника ca1c1.

Используя теорему Пифагора, найдем длину ребра cc1:
cc1 = √(ca1^2 - c1a1^2)
= √(11^2 - 6^2)
= √(121 - 36)
= √85
≈ 9.22

Таким образом, длина ребра cc1 примерно равна 9.22.

2. Найдем синус угла между диагональю ca1 и плоскостью abcd:
Плоскость abcd представляет собой базовую грань параллелепипеда. Диагональ ca1, идущая от вершины c, будет пересекать эту плоскость в какой-то точке.

Поскольку угол между двумя плоскостями определяется диагональю, которая пересекает эти плоскости, для нахождения угла между диагональю ca1 и плоскостью abcd нам нужно найти синус этого угла.

Синус угла α можно найти с помощью формулы:
sin(α) = |ca1 × n| / (|ca1| * |n|)

Где ca1 - диагональ вектора, и n - вектор нормали к плоскости abcd.
Для нахождения n нам понадобится произведение векторов в направлении нормали к плоскости abcd.

Примем точку a за начало координат и примем вектор ca1 за вектор (x, y, z). Тогда вектор n будет перпендикулярен воздушной g, поэтому мы можем найти его с помощью произведения векторов.

Пусть вектор n = (a, b, c).

Тогда векторное произведение ca1 x n = (y * c - z * b, z * a - x * c, x * b - y * a) должно быть перпендикулярно ca1. Поэтому скалярное произведение векторного произведения и вектора ca1 должно быть равно нулю:

(y * c - z * b)x + (z * a - x * c)y + (x * b - y * a)z = 0

Таким образом, у нас есть 3 уравнения с 3 неизвестными:
(1) y * c - z * b = 0
(2) z * a - x * c = 0
(3) x * b - y * a = 0

Решая эти уравнения, мы найдем значения x, y и z:

Из уравнения (1) получаем: y * c = z * b => y = z * b / c

Подставляем найденное значение y в уравнение (3): x * b - (z * b / c) * a = 0 => x * b * c - z * b * a = 0 => x = z * a / c

Подставляем найденные значения x и y в уравнение (2): (z * a / c) * c - (z * b / c) * a = 0 => 0 = 0

Мы видим, что уравнение (2) верно для любых значений x, y и z, поэтому система уравнений имеет бесконечное количество решений.

Значит, плоскость abcd параллельна вектору ca1, и синус угла между диагональю ca1 и плоскостью abcd равен 0.

Таким образом, синус угла между диагональю ca1 и плоскостью abcd равен 0.
4,7(17 оценок)
Ответ:
yuliya91
yuliya91
25.06.2022
Чтобы определить наиболее выгодные размеры страницы, мы должны учесть следующие факторы: площадь текста, ширину полей и общую площадь страницы.

Площадь текста на странице составляет 160 см^2. Так как ширина полей слева и справа составляет 2 см, а сверху и снизу - 5 см, мы можем вычислить площадь полей. Для этого найдем произведение ширины полей на высоту страницы.

Ширина полей слева и справа: 2 см + 2 см = 4 см.
Высота полей сверху и снизу: 5 см + 5 см = 10 см.

Площадь полей: 4 см * 10 см = 40 см^2.

Общая площадь страницы: площадь текста + площадь полей.
Общая площадь страницы: 160 см^2 + 40 см^2 = 200 см^2.

Чтобы найти наиболее выгодные размеры страницы, нам нужно найти такие размеры, при которых общая площадь страницы будет минимальной и одновременно соответствовать требуемым размерам полей.

Общая площадь страницы равна произведению ширины страницы на высоту страницы. Обозначим ширину страницы как х, а высоту как у.

Общая площадь страницы: х * у.

Требования к полям дают нам следующие уравнения:
2 см = ширина поля слева = ширина поля справа.
5 см = высота поля сверху = высота поля снизу.

Теперь мы можем выразить высоту и ширину страницы в терминах переменных:

Ширина страницы = ширина текста + ширина полей слева и справа.
х = ширина текста + 2 см + 2 см.
х = ширина текста + 4 см.

Высота страницы = высота текста + высота полей сверху и снизу.
у = высота текста + 5 см + 5 см.
у = высота текста + 10 см.

Теперь мы можем выразить общую площадь страницы в терминах переменных:

Общая площадь страницы = х * у.
Общая площадь страницы = (ширина текста + 4 см) * (высота текста + 10 см).

Для определения наименьшей площади страницы, нам нужно найти минимальную площадь текста при условии, что ширина полей составляет 4 см, а высота полей - 10 см.

Теперь мы можем решить эту задачу с помощью дифференциального исчисления:

Для нахождения минимальной площади страницы, возьмем производную общей площади страницы по ширине текста и высоте текста, и приравняем их к нулю.

∂(Общая площадь страницы) / ∂(ширина текста) = 0
∂(Общая площадь страницы) / ∂(высота текста) = 0

Так как производная равна нулю, мы можем найти оптимальные значения ширины и высоты текста.

Решив эти уравнения, мы найдем оптимальные значения ширины и высоты текста, а следовательно и оптимальные размеры страницы.

В данном случае подходит подходит математическое моделирование для нахождения оптимальных размеров страницы. Я подготовлю модель и обработаю уравнения дифференцирования для получения оптимальных решений.
4,4(95 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ