Чтобы решить эту задачу, нам понадобятся знания о свойствах вписанной окружности и формуле площади треугольника.
Согласно свойству вписанной окружности, любая прямая, проведенная из вершины треугольника к точке касания окружности с стороной, делит эту сторону на две части, длины которых являются хордами окружности. В нашем случае, такая прямая будет проходить через точку C и делить сторону AB на две равные части длиной 7.5 см каждая.
Мы можем обозначить длины сторон треугольника как AB = 15 см, AC = 7.5 см и BC = 7.5 см. Теперь мы можем использовать формулу полупериметра треугольника и радиус вписанной окружности, чтобы найти площадь треугольника.
Полупериметр треугольника вычисляется по формуле s = (AB + AC + BC) / 2. В нашем случае s = (15 + 7.5 + 7.5) / 2 = 15 см.
Формула площади треугольника через полупериметр и радиус вписанной окружности имеет вид S = sqrt(s * (s - AB) * (s - AC) * (s - BC)), где sqrt обозначает квадратный корень.
ответ:
пусть дана равнобокая трапеция abcd, bc||ad, угол abc = углу bcd и они больше 90 градусов
треугольник abc- равнобедренный и угол bac= углу bca
диагональ ac является секущей между параллельными линиями bc и ad, поэтому угол cad= углу bca и естественно равен углу adc
тогда угол acd=углу bac + угол bca
и тогда будем иметь
пусть угол bac=x, тогда угол acd=2x и угол bcd=3x, а значит и угол abc=3x
угол cad=2x и угол acd тоже равен 2x
в целом получаем, что
3x+3x+2x+2x=360 градусов
10x=360 => x= 36 градусов
то есть угол abc=углу bcd = 108 градусов.
угол bad = углу cda=72 градуса.
!