М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Settiko
Settiko
19.02.2020 15:46 •  Математика

Y" вас мне, каким образом решается правая часть?
Левая насколько я понял - решается через хракт.уравнение
и получаем C1+C2*e^2x
но вот что делать с правой частью я не знаю.

👇
Ответ:
qqlaza
qqlaza
19.02.2020

То, что решается через характеристическое уравнение - это общее решение. Оно всегда будет независимо от правой части диффура.

По сути, нужно найти так называемое частное решение, и тогда решением для этого диффура будет сумма общего и частного решений.

Частное решение подбирается, исходя из правой части. В данном случае, правая часть есть многочлен второго порядка. Поэтому частное решение будет также иметь вид многочлена, причем многочлена второго порядка: y_c(x) = Ax^2+Bx+C (y_c(x) - частное решение, A, B и C - константы, которые нужно подобрать). Теперь необходимо подставить это решение вместо y в данном диффуре, и найти константы.

(второго порядка потому, что многочлена первого порядка может не хватать, а многочлен не ниже третьего порядка избыточен, можешь попробовать подставить многочлен третьего порядка, но при нахождении коэффициентов он занулится)

UPD: ошибся в выборе многочена. Нужно использовать многочлен третьего порядка: y_c(x) = Ax^3+Bx^2+Cx+D (необходимо, чтобы после подстановки y_c(x) в диффур в левой части получился многочлен не ниже порядка многочлена в правой части)

4,4(60 оценок)
Открыть все ответы
Ответ:
Акбота000000
Акбота000000
19.02.2020

0,6^{\frac{2x-3}{5x-1} }\geq 0,6^{\frac{2x-1}{5x+4} }

Показательная функция с основанием (0 <0,6 <1)  убывающая, значит большему значению функции соответствует меньшее значение аргумента

Это означает, что в неравенстве между показателями степеней знак меньше:

\frac{2x-3}{5x-1}\leq\frac{2x-1}{5x+4}

Получили дробно- рациональное неравенство.

Переносим выражение справа в левую часть

\frac{2x-3}{5x-1}-\frac{2x-1}{5x+4}\leq 0

Приводим к общему знаменателю  и получаем неравенство

\frac{(2x-3)(5x+4)-(2x-1)(5x-1)}{(5x-1)(5x+4)}\leq 0

\frac{10x^2-15x+8x-12-(10x^2-5x-2x+1)}{(5x-1)(5x+4)}\leq 0\\ \\ \frac{10x^2-7x-12-10x^2+7x-1}{(5x-1)(5x+4)}\leq 0\\ \\ \frac{-13}{(5x-1)(5x+4)}\leq 0\\ \\-13 0

Знаменатель дроби не должен равняться 0, поэтому неравенство строгое.

Решение  неравенства x < -4/5  или  x>1/5

Интервалов два:

(-∞;-4/5)  U (1/5;+∞)

Наименьшее целое положительное х=1

В ответ не вошли числа принадлежащие

[-4/5;1/5]

Далее непонятен вопрос, сумму каких чисел надо найти:

целых положительных?

4,4(15 оценок)
Ответ:
lolsasafd
lolsasafd
19.02.2020

0,6^{\frac{2x-3}{5x-1} }\geq 0,6^{\frac{2x-1}{5x+4} }

Показательная функция с основанием (0 <0,6 <1)  убывающая, значит большему значению функции соответствует меньшее значение аргумента

Это означает, что в неравенстве между показателями степеней знак меньше:

\frac{2x-3}{5x-1}\leq\frac{2x-1}{5x+4}

Получили дробно- рациональное неравенство.

Переносим выражение справа в левую часть

\frac{2x-3}{5x-1}-\frac{2x-1}{5x+4}\leq 0

Приводим к общему знаменателю  и получаем неравенство

\frac{(2x-3)(5x+4)-(2x-1)(5x-1)}{(5x-1)(5x+4)}\leq 0

\frac{10x^2-15x+8x-12-(10x^2-5x-2x+1)}{(5x-1)(5x+4)}\leq 0\\ \\ \frac{10x^2-7x-12-10x^2+7x-1}{(5x-1)(5x+4)}\leq 0\\ \\ \frac{-13}{(5x-1)(5x+4)}\leq 0\\ \\-13 0

Знаменатель дроби не должен равняться 0, поэтому неравенство строгое.

Решение  неравенства x < -4/5  или  x>1/5

Интервалов два:

(-∞;-4/5)  U (1/5;+∞)

Наименьшее целое положительное х=1

В ответ не вошли числа принадлежащие

[-4/5;1/5]

Далее непонятен вопрос, сумму каких чисел надо найти:

целых положительных?

4,7(74 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ