Оценка:
Докажем, что больше 213 чисел выбрать нужным образом не удастся. Пусть мы выбрали хотя бы 214 чисел. Тогда хотя бы в одной из троек чисел [1, 2, 3], [5, 6, 7], ... , [849, 850, 851] (для удобства добавил "850" и "851", нужных чисел от этого меньше не станет) будет выбрано хотя бы два числа. Но они не имеют общих делителей, так как либо отличаются на 1, либо на 2 и оба - нечётные. Значит, нужным образом можно выбрать не более 213 чисел.
Пример:
Выберем все числа, делящиеся на 3. Они все имеют делитель 3, следовательно, удовлетворяют условию. Из каждой тройки мы выбрали ровно одно число, причём из последней было выбрано число 849. Всего троек чисел было 213, следовательно, 213 чисел выбрать можно.
ответ: 213 чисел.
Если числа могут повторяться, то: на первое место (количество сотен) можно подставить 5 чисел, на второе место (количество десятков) можно подставить 5 чисел, на третье место (количество единиц) можно подставить 5 чисел.
Тогда: 5*5*5=125 вариантов
Если числа не могут повторяться, то: на первое место (количество сотен) можно подставить 5 чисел, на второе место (количество десятков) можно подставить 4 числа, на третье место (количество единиц) можно подставить 3 числа.
Тогда 5*4*3=60 вариантов
ответ: взависимости от условия или 125 (с повторами) или 60 (без повторов).
4,8
Пошаговое объяснение: