Для наглядности удобно провести некоторое соответствие с трехмерным пространством
Понятно что z(x,y) можно в нем изобразить как некоторую поверхность

Точке (1,4) соответствует
, т.е. точка
(*)
Линию
удобнее записать как трехмерную кривую
, что будет пересекать поверхность z(x,y) при x=1
Запишем уравнение касательной к этой кривой в точке
, в качестве параметра берем переменную x
(#)
(вычисляется по аналогии с
)
В прикрепленном файле нарисована поверхность, кривая и касательная.
Зная уравнение касательной, построим единичный вектор в направлении убывания x:
Пусть x=0, тогда из (#) получим точку 
Соотв. единичный вектор в направлении этой точки из (*) имеет вид

Понятно что z компонента никак не повлияет на значение производной по направлению, формально вектор можно записать как

И, наконец, найдем искомую производную:
![grad[z(M_0)]\cdot\overset{\rightharpoonup }{n}=\left\{e^4,1 \cdot e^4\right\} \cdot \{-1,4\}\cdot\frac{1}{\sqrt{17} } = \frac{3 e^4}{\sqrt{17}} \approx 39.726](/tpl/images/0992/5590/2e9d7.png)
а)x = 1
т)y = -7
ж)z = -2
Пошаговое объяснение:
а)3x=x+2
3x-x=2
2x=2
x=1
т)-14-y=y
-y-y=14
-2y=14
2y=-14
y=-7
ж)-3z=12z+30
-3z-12z=30
-15z=30
15z=-30
z=-2