Четырехугольник, в котором провели диагональ разбивается на два треугольника с общей стороной. Необходимо, чтобы для длин сторон каждого из этих треугольников выполнялось неравенство треугольника (a+b>c, где a,b,c - длины сторон треугольника). Посмотрим, какие длины сторон могут быть у треугольника, если одна из его сторон равна 15. 15<11.5+10 - может быть 10, 11.5, 15 15<11.5+4 - может быть 4, 11.5, 15 15>11.5+2 - такого набора длин сторон быть не может 15>10+4 - такого набора длин сторон быть не может 15>10+2 - такого набора длин сторон быть не может
Рассмотрим первый вариант. На второй треугольник остаются длины 2, 4 и одна из длин сторон первого треугольника, а этого быть не может (2+4<10<11.5<15)
Теперь второй вариант: Остаются 2 и 10. 2+4<10 2+10>11.5 - единственный подходящий вариант. 2+10<15
Диагональ входит в оба треугольника, а значит ее длина 11.5
Четырехугольник, в котором провели диагональ разбивается на два треугольника с общей стороной. Необходимо, чтобы для длин сторон каждого из этих треугольников выполнялось неравенство треугольника (a+b>c, где a,b,c - длины сторон треугольника). Посмотрим, какие длины сторон могут быть у треугольника, если одна из его сторон равна 15. 15<11.5+10 - может быть 10, 11.5, 15 15<11.5+4 - может быть 4, 11.5, 15 15>11.5+2 - такого набора длин сторон быть не может 15>10+4 - такого набора длин сторон быть не может 15>10+2 - такого набора длин сторон быть не может
Рассмотрим первый вариант. На второй треугольник остаются длины 2, 4 и одна из длин сторон первого треугольника, а этого быть не может (2+4<10<11.5<15)
Теперь второй вариант: Остаются 2 и 10. 2+4<10 2+10>11.5 - единственный подходящий вариант. 2+10<15
Диагональ входит в оба треугольника, а значит ее длина 11.5
х-13=25+24
х=25+24+13
х=62
62-13=25+24
49=49
31-а=6+7+4
-а=17-31
а=14
31-14=6+7+4
17=17
у+(90-27)=100
у+63=100
у=100-63
у=37
37+(90-27)=100
100=100
Пошаговое объяснение: