1)пусть х-количество машин типа А
у-типа В
Судя по выделенным 200 т р
0≤x≤4
0≤y≤10
Судя по площади y≤6, так как 72/12=6-на указанной площади одних станков типа В влезет не более 6
Значит ОДЗ
0≤x≤4
0≤y≤6
вариантов покупок немного. я их укажу в таблице. посчитав при этом при каждом варианте выборки S-занятую площадь, $-стоимость покупки в т. руб . и V-объем выпускаемых т. ед продукции
x y S $ V
4 0 6*4=24 50*4=200 8*4=32
3 2 3*6+2*12=42 50*3+2*20=190 8*3+3*2=30
2 5 6*2+5*12=72 50*2+20*5=200 8*2+5*3=31
1 5 6*1+5*12=66 50*1+20*5=150 8*1+5*3=23
0 6 6*12=72 20*6=120 3*6=18
пояснение почему именно такие выборки-все ограничено 200 т. р и площадью 72 кв.м
Пошаговое объяснение:
В математике есть много подобных «доказательств». В том числе есть и «доказательство» того, что 2*2=5. Но все эти «доказательства» содержат в себе ошибки, но бывает, что их трудно сразу обнаружить. Ученые такими доказательствами не занимаются. Только шутники, которые неплохо знают математику.
То, что 2+2=5 есть много разных «доказательств». Приведу самое Представим равенство: 20-20=25-25. Выносем множители: 4(5-5)=5(5-5) и разделим на общий множитель (5-5). Получим 4=5. Следовательно, 2+2=5. Попробуйте найти здесь ошибку. А всё очень А в математике делить на ноль нельзя.
Ещё одно «доказательство». 2+2=5. Преобразуем это равенство 2 * 1 + 2 * 1 = 5 * 1. Распишем 1 как частное равных чисел: Имем 1 = (5-5)/(5-5). Тогда получим 2 * (5-5)/(5-5) + 2 * (5-5)/(5-5) = 5 * (5-5)/(5-5). Умножим обе части уравнения на(5-5), тогда имеем 2*(5-5) + 2*(5-5) = 5*(5-5) Отсюда получим 0 + 0 = 0. Это доказательство похоже на предыдущее, но лихо закрученное. Здесь также нельзя делить на ноль.
А вот ещё более сложное «доказательство». Докажем что 2+2=5 и 2 * 2 = 5, тоже равно 5. То есть 4=5 . Запишем сначала очевидное равенство 25 - 45 = 16 - 36 . Прибавим (9/2)^2 к обеим частям 25 - 45 + (9/2)^2 = 16 - 36 + (9/2)^2. Или 5^2 - (2 * 5 * 9)/2 + (9/2)^2 = 4^2 - (2 * 4 * 9)/2 + (9/2)^2. Отсюда(5-9/2)^2 = (4-9/2)^2. Обе части положительны, можно извлечь квадратный корень. 5 - 9/2 = 4 - 9/2. Теперь прибавим 9/2 к обеим частям уравнения: 5 = 4 что и требовалось доказать. Итак, 2*2 = 5 и 2+2=5. Где здесь ошибка в доказательстве?