1. -2х²-3х+5;
-2х²-5х+2х+5;
(-2х²+2х)+(5-5х);
2х(-х+1)+5(1-х)=2х(1-х)+5(1-х);
(1-х)(2х+5).
2. (х²+х-20)/(х²+2х-15);
х²+5х-4х-20/х²+5х-3х-15;
х *(х+5)-4(х+5)/х*(х+5)-3(х+5);
(х+5)*(х-4)/(×+5)*(х-3);
х-4/х-3.
3. х⁴-5х²+4=0
4х-10+4=0
4х-6=0
х=3
4. Два рабочих работая вместе, выполнили производственное задание за 12 часов.
За сколько часов может выполнить эту задачу каждый рабочий, работая самостоятельно, если один из них может выполнить это задание на 7 часов быстрее другого?
х — время работы первого
х+7 — время работы второго
1/х+1/(х+7)=1/12
12(х+7)+12х=х(х+7)
12х+84+12х=х²+7х
х²-17х-84=0
х1=21
х2= -4
х+7=28
ответ — 21ч и 28 ч
Пошаговое объяснение:
Различают следующие виды случайных событий: достоверные, невозможные и случайные. События обозначаются большими латинскими буквами А, В, С,...,Z. Достоверное событие всегда происходит в результате наблюдения или испытания. Достоверное событие обозначается символом – W.
Невозможное событие никогда не происходит в результате наблюдения или испытания. Невозможное событие обозначается символом – Æ.
Пример. Если в корзине только персики, то достать из корзины персик является достоверным событием, а достать лимон является невозможным событием.
Случайное событие – это такое событие, которое в результате наблюдения или испытания может произойти, а может и не произойти.
Пример. Студент сдаёт экзамен. Экзамен сдан. Это событие случайное, так как студент мог и не сдать экзамен.
Кроме того, события могут быть совместными и несовместными, зависимыми или независимыми. Два события называются совместными, если появление одного из них не исключает появления другого в одном и том же испытании. Примеры совместных событий: два стрелка стреляют по мишени, два спортсмена одновременно бегут. Случайные события А и В называются несовместными, если при данном испытании появление одного из них исключает появление другого события. Несовместные события: день и ночь, студент одновременно едет на занятие и сдаёт экзамен, число иррациональное и чётное.
Событие А называется независимым от события В, если вероятность появления события А не зависит от того произошло событие В или нет. Пример. Два студента одновременно сдают экзамен независимо друг от друга. Это событие совместное и независимое. Событие А называется зависимым от события В, если вероятность появления события А зависит от того произошло или не произошло событие В. Пример. Работник получит оплату труда в зависимости от качества её выполнения.
Равновозможные события – это такие события, которые имеют одинаковые возможности для их появления. Полная группа событий – это совокупность единственно возможных событий при данном испытании. Пример. Студент может сдать экзамен на любую оценку. В данном случае возможны следующие события: студент может сдать экзамен на 5, студент может сдать экзамен на 4, студент может сдать экзамен на 3. Эти события образуют полную группу.
Противоположные события. Два случайные события А и В называются противоположными, если они несовместны и образуют полную группу событий. Примеры: студент может сдать или не сдать экзамен, день и ночь.
Конкретный результат испытания называется элементарным событием. Совокупность всех возможных, различных, конкретных исходов испытаний называется множеством элементарных событий.
Сложным событием (исходом) называется произвольное подмножество множества элементарных событий. Сложное событие в результате испытания наступает тогда и только тогда, когда в результате испытаний произошло элементарное событие, принадлежащее сложному. Например, испытание – подбрасывание кубика. Элементарное событие – выпадение грани с числом «5». Сложное событие – выпадение грани с нечётным числом.