№2 На столе лежат апельсин, банан, мандарин, персик и яблоко. Их веса равны 100 г, 150 г, 170 г, 200 г, 280 г, но неизвестно, какой фрукт сколько весит.
Известно, что:
персик легче апельсина;
мандарин тяжелее банана, но легче персика;
яблоко легче мандарина;
банан и мандарин вместе тяжелее апельсина.
Какой фрукт сколько весит?
На столе лежат апельсин, банан, мандарин, персик и яблоко. Их веса равны 100 г, 150 г, 170 г, 200 г, 280 г, но неизвестно, какой фрукт сколько весит.
№ 3
На стене висят часы с кукушкой. Когда начинается новый час, кукушка говорит «ку-ку» количество раз, равное числу, на которое показывает часовая стрелка (например, в 19:00 «ку-ку» звучит 7 раз). Как-то утром Максим подошёл к часам, когда на них было 9:05. Он стал крутить пальцем минутную стрелку, пока не перевёл часы на 7 часов вперёд. Сколько раз за это время прозвучало «ку-ку»?
№ 4
На дискотеку по случаю окончания учебного года пришло в два раза больше мальчиков, чем девочек. Маша посчитала, что девочек, кроме неё самой, на дискотеке на 8 меньше, чем мальчиков. Сколько мальчиков пришло на дискотеку?
Из клетчатого квадрата 8×8 вырезали голубые треугольники. Чему равна площадь оставшейся фигуры? Длина стороны каждой клетки равна 1 см. ответ дайте в квадратных сантиметрах.
№ 6
На доске написано одно трёхзначное число и два двузначных. Сумма чисел, в записи которых есть семёрка, равна 208. А сумма чисел, в записи которых есть тройка, равна 76. Найдите сумму всех трёх чисел.
Вася хочет расставить в квадратики числа от 1 до 6 (каждое — по одному разу) так, чтобы выполнялось следующее условие: если два квадратика соединены, то в том, который выше, число больше. Сколько существует это сделать?
В стране 100 городов: 30 из них находятся в горной части страны, а 70 — в равнинной. В течение трёх лет между городами устанавливали авиасообщение. Каждый год в стране открывалось 50 новых авиарейсов: все города случайным образом разбивались на 50 пар, и между городами из одной пары открывался рейс. Через три года оказалось, что из 150 открытых рейсов ровно 24 соединяют пару «горных» городов. Сколько рейсов соединяют пару «равнинных» городов?
По условию задачи велосипедисты договорились прибыть в пункт назначение одновременно ⇒ время в пути одинаковое t₁ = t₂ =2 часа .
Вместе они проехали расстояние 54 км ⇒ I уравнение :
2 * (V₁ + V₂) = 54
Путь II велосипедиста на 6 км длиннее, чем путь I -го ⇒ II уравнение:
2V₂ - 2V₁ = 6 км
Решим систему уравнений:
{2(V₁+V₂) = 54 ⇔ {V₁ +V₂ = 27 ⇔ {V₂ = 27 -V₁
{2V₂ - 2V₁ = 6 ⇔ {2(V₂ -V₁) = 6 ⇔ {V₂ - V₁ = 3
Метод подстановки:
27 - V₁ - V₁ = 3
27 -2V₁ = 3
- 2V₁ = 3 - 27
- 2V₁ = - 24
V₁ = (-24) : (-2)
V₁ = 12 (км/ч) скорость I велосипедиста
V₂ = 27 - 12 = 15 (км/ч) скорость II велосипедиста
Проверим:
2 *(12 + 15) = 2 * 27 = 54 (км) расстояние
2*15 - 2*12 = 30 - 24 = 6 (км) разница в расстоянии
ответ: V₁ = 12 км/ч ; V₂ = 15 км/ч .