24,57: 3,5+(3,35-2¹³/₁₅+⁵/₈)×(225: 12,5-3¹⁴/₁₉×2) = 85³²/₅₇
1) 24,57: 3,5 = 7,02
2) 3,35-2¹³/₁₅ =³³⁵/₁₀₀-⁴³/₁₅ =³³⁵ˣ³/₃₀₀-⁴³ˣ²⁰/₃₀₀=¹⁰⁰⁵/₃₀₀-⁸⁶⁰/₃₀₀=¹⁰⁰⁵⁻⁸⁶⁰/₃₀₀=¹⁴⁵/₃₀₀ = ²⁹/₆₀
3) ²⁹/₆₀+⁵/₈=²⁹ˣ⁴/₂₄₀+⁵ˣ³⁰/₂₄₀=¹¹⁶/₂₄₀+¹⁵⁰/₂₄₀=¹¹⁶⁺¹⁵⁰/₂₄₀ = ²⁶⁶/₂₄₀= ¹³³/₁₂₀
4) 7,02+¹³³/₁₂₀ = ⁷⁰²/₁₀₀+¹³³/₁₂₀ = ⁷⁰²ˣ⁶/₆₀₀+¹³³ˣ⁵/₆₀₀ = ⁴²¹²/₆₀₀+⁶⁶⁵/₆₀₀ = ⁴²¹²⁺⁶⁶⁵/₆₀₀ = ⁴⁸⁷⁷/₆₀₀ - перед знаком "умножить"
5) 225: 12,5= 18
6) 3¹⁴/₁₉×2 =⁷¹/₁₉ײ/₁ = ⁷¹ˣ²/₁₉ = ¹⁴²/₁₉ = 7⁹/₁₉
7) 18 - 7⁹/₁₉ = 17¹⁹/₁₉ - 7⁹/₁₉ = 10¹⁰/₁₉ = ²⁰⁰/₁₉
8) ⁴⁸⁷⁷/₆₀₀× ²⁰⁰/₁₉ = ⁴⁸⁷⁷ˣ²⁰⁰/₆₀₀ₓ₁₉ = ⁴⁸⁷⁷/₃ₓ₁₉ = ⁴⁸⁷⁷/₅₇ = 85³²/₅₇
Предположим, что у нас есть функция (график этой функции – это парабола) и необходимо построить график функции . Вычислим значения некоторых точек для графиков этих функций.
Из таблиц видно, что одним и тем же значениям аргумента соответствуют противоположные значения функций. Графически это означает, что графики расположены симметрично относительно оси абсцисс. То есть заданная парабола () зеркально отобразится относительно оси (см. Рис. 1).
Рис. 1. Графики функций и
Таким образом, если у нас есть произвольный график , то для построения графика необходимо график симметрично отразить относительно оси (см. Рис. 2). Такое преобразование называется преобразованием симметрии относительно оси .
Рис. 2. Преобразование симметрии относительно оси
Преобразование симметрии – зеркальное отражение относительно прямой. График получается из графика функции преобразованием симметрии относительно оси .
На рисунке 3 показаны примеры симметрии относительно оси .
Рис. 3. Симметрия относительно оси Ox