М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ЛордТарнум
ЛордТарнум
04.03.2022 06:05 •  Математика

У=5х
Найти по графику
у, если х=1;0;2;
х, если у=-5;0;-10
С чертежом

👇
Ответ:

1)х=1

у=5•1

у=5

2)х=0

у=5•0

у=0

3)х=2

у=5•2

у=10

1)у=-5

-5=5х

х=-1

2)у=0

0=5х

х=0

3)у=-10

-10=5х

х=-2

Чертёж попозже опубликую, напишу когда прикреплю

А вообще, чтобы построить чертеж, то берешь под 1) чему равен х и у и ставишь эту точку на чертеже. Потом берешь х и у из 2) решения и ставишь точку. Потом берешь х и у из 3) и ставишь точку. Потом точки соединяешь. Вот.

Чертёж снизу

Точки (х;у)

1) (1;-5)

2) (0;0)

3) (-2;10)


У=5хНайти по графику у, если х=1;0;2;х, если у=-5;0;-10С чертежом
4,4(61 оценок)
Открыть все ответы
Ответ:
Пам904
Пам904
04.03.2022

  "Найдите параллельные прямые и докажите,что они равны" - задание некорректно. Можно говорить о параллельных прямых и равных отрезках на них. Или о равных параллельных отрезках.

    Решение задач опирается на равенство и сумму углов треугольников , теоремы о признаках параллельности двух прямых: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.(№33) . Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны (№30).

№ 30

   Рассмотрим Δ ABE и  Δ CDF.  BE = DF -- по условию;  АС = ЕF --- по условию.  AE = АС + СЕ;   CF = ЕF+ СЕ. ⇒ АЕ = СF, так как состоят из равных частей. Внешние углы  ∠BEF = ∠DFM по рисунку ⇒ равны и смежные внутренние углы этих треугольников.  ⇒ Δ ABE = Δ CDF ( по 2 сторонам и углу между ними)

  ∠BEF = ∠DFM по условию, а это соответственные углы при прямых BE, DF  и секущей АМ .   ⇒  BE ║DF по признаку параллельности прямых, и отрезки BE и DF равны как соответствующие стороны равных треугольников

     Прямые АВ и СD параллельны по признаку параллельности прямых , так как углы, образованные этими прямыми и секущей АМ равны как углы равных треугольников и эти углы ( ∠BАЕ и ∠DСF) являются соответственными. Отрезки АВ и СD равны как стороны равных треугольников

ответ: BE ║DF, BE =DF; АВ║СD, АВ =СD

№ 33

    Рассмотрим Δ NRQ; RQ= NQ - по условию.⇒ Δ NRQ - равнобедренный с основанием NR. А углы при основании равнобедренного тр-ка равны. Так как сумма углов треугольника равна 180°, то ∠RNQ = (180°-30°)/2 = 75°

   Рассмотрим Δ MNQ. ∠MQN = 30° + 45° = 75° -- по рисунку

∠NMQ = 180° - ∠RNQ - ∠MQN  = 180° - 75° - 75° = 30°

∠KNM = ∠NMQ = 30°, а эти углы - внутренние накрест лежащие при прямых KN, MQ и  секущей NM. ⇒ KN ║ MQ по признаку параллельности прямых

    MN = МQ так как треугольник MNQ равнобедренный, это вытекает из равенства углов ∠RNQ  и ∠MQN  

   В данной задаче можно найти только отрезок MQ, параллельный прямой KN,  равных параллельных отрезков нет. Есть равные стороны в равнобедренных треугольниках (MN =MQ и RQ = NQ) , но они не параллельны.

ответ:  KN ║ MQ.

4,4(25 оценок)
Ответ:
Dimo558
Dimo558
04.03.2022

  "Найдите параллельные прямые и докажите,что они равны" - задание некорректно. Можно говорить о параллельных прямых и равных отрезках на них. Или о равных параллельных отрезках.

    Решение задач опирается на равенство и сумму углов треугольников , теоремы о признаках параллельности двух прямых: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.(№33) . Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны (№30).

№ 30

   Рассмотрим Δ ABE и  Δ CDF.  BE = DF -- по условию;  АС = ЕF --- по условию.  AE = АС + СЕ;   CF = ЕF+ СЕ. ⇒ АЕ = СF, так как состоят из равных частей. Внешние углы  ∠BEF = ∠DFM по рисунку ⇒ равны и смежные внутренние углы этих треугольников.  ⇒ Δ ABE = Δ CDF ( по 2 сторонам и углу между ними)

  ∠BEF = ∠DFM по условию, а это соответственные углы при прямых BE, DF  и секущей АМ .   ⇒  BE ║DF по признаку параллельности прямых, и отрезки BE и DF равны как соответствующие стороны равных треугольников

     Прямые АВ и СD параллельны по признаку параллельности прямых , так как углы, образованные этими прямыми и секущей АМ равны как углы равных треугольников и эти углы ( ∠BАЕ и ∠DСF) являются соответственными. Отрезки АВ и СD равны как стороны равных треугольников

ответ: BE ║DF, BE =DF; АВ║СD, АВ =СD

№ 33

    Рассмотрим Δ NRQ; RQ= NQ - по условию.⇒ Δ NRQ - равнобедренный с основанием NR. А углы при основании равнобедренного тр-ка равны. Так как сумма углов треугольника равна 180°, то ∠RNQ = (180°-30°)/2 = 75°

   Рассмотрим Δ MNQ. ∠MQN = 30° + 45° = 75° -- по рисунку

∠NMQ = 180° - ∠RNQ - ∠MQN  = 180° - 75° - 75° = 30°

∠KNM = ∠NMQ = 30°, а эти углы - внутренние накрест лежащие при прямых KN, MQ и  секущей NM. ⇒ KN ║ MQ по признаку параллельности прямых

    MN = МQ так как треугольник MNQ равнобедренный, это вытекает из равенства углов ∠RNQ  и ∠MQN  

   В данной задаче можно найти только отрезок MQ, параллельный прямой KN,  равных параллельных отрезков нет. Есть равные стороны в равнобедренных треугольниках (MN =MQ и RQ = NQ) , но они не параллельны.

ответ:  KN ║ MQ.

4,7(69 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ