Пропорция (от лат. proportio - соотношение, соразмерность), 1) в математике - равенство между двумя отношениями четырёх величин а, в, с, d: a/b=c/d . Величины a, b, с, d называют членами пропорции, причём а и d - крайними, a b и с - средними. Произведение средних членов пропорции должно равняться произведению крайних: bc = ad. Этим свойством, называемым основным свойством пропорции, пользуются для проверки правильности пропорции и для выражения одного какого-либо её члена через остальные (например, b=(ad)/c) 2) В пластических искусствах - соотношение величин элементов художественного произведения, а также отдельных элементов и всего произведения в целом. Различают, в частности, пропорции архитектурные и пропорции, используемые для изображения человеческого тела и лица. Представления о пропорции возникли в ходе практической деятельности архитекторов и художников древнего мира, применявших при создании произведений определённые модули и геометрические построения. Кроме пропрций, основанных на кратных и целочисленных отношениях, широко распространились системы пропорционирования, приводящие к иррациональным отношениям (например, золотое сечение).
1 и 3 задачи были самыми легкими в 6-м и 5-м классах. Их решили по 5 учеников. Значит в 4-м самой легкой задачей должна быть 2-ая или 4-ая, но другая задача должна набрать больше решений в суме, ее должны решить не менее 6 учеников. Если самая легкая 4-я, то ее должны решить не менее 5 четвероклассника, тогда она будет самой легкой и в 4-м классе — не подходит по условию. Чтобы самой легкой на олимпиаде была вторая, ее должны решить не менее 3-х четвероклассников, а самой легкой в 4-м классе будет 4-я — 4 решивших.